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Proximal Algorithms in Inverse Imaging Problems:
First and Second-Order Splitting

Simão Eduardo, e-mail: simao eduardo@outlook.com

Abstract—Large-scale convex optimization problems with non-
smooth functionals are found in many areas. Several convex
splitting strategies using (Moreau) Proximity operators have
been developed. This report compares competitive First-Order
strategies (e.g. Forward-Backward, Chambolle-Pock) to a rel-
evant Second-Order one: the Alternating Direction Method of
Multipliers. We analyze convergence rates for these through
empiric results, recurring to two pertinent examples in (regu-
larized) Inverse Problems in Imaging: “Super-Resolution Total
Variation Deblurring” and “Hyperspectral Image Segmentation”.
Indeed, the Second-Order approach reveals a marked empirical
advantage, where the problem structure allows for efficient
implementation.

I. INTRODUCTION

PROBLEMS in convex optimization containing nonsmooth
functionals in their overall objective function are common

in many areas. Examples range from ill-posed inverse prob-
lems in imaging to machine learning, or even other areas of
signal processing [1], [2], [3], [4], [5], [6], [7]. The so-called
Proximal algorithms can tackle this type of problems.

All Proximal algorithms make use of a base operation,
the (Moreau) Proximity operator of a function [1], which
in turn involves solving several smaller convex optimization
problems. Furthermore, these can be solved with standard
methods, but usually offer closed-form solutions or make use
of straightforward specialized methods. In fact, frequently the
overall objective function can be decomposed into a sum of
several lower-dimension functionals (i.e. Splitting property),
such that the former properties can be used to promotes
parallelism. An algorithm which aims at minimizing a sum
of functionals by successive evaluations of their gradients or
Proximity operators is a Proximal algorithm.

Indeed, the Proximity operator is the resolvent of the
inclusion involving the subdifferential operator, which arises
from the nonsmoothness in the objective function [1], [8], [5],
[9]. A clear formulation will be given.

Firstly, we present some definitions: X is some Hilbert
space (Euclidean space Rn is used throughout); ‖.‖ is the
Euclidean norm; Γ0 is the set of all functions f : X →
R ∪ {∞} that are closed, proper (i.e., nonempty effective
domain) and convex; l is defined as a vector, and L as a
matrix; Id is the identity matrix; L∗ is the conjugate transpose
of matrix L; f∗(.) is the (Fenchel) conjugate of function
f(.), in [9]; and function f(.) is β-Lipschitz continuous if
‖f(x)− f(x′)‖ ≤ β‖x− x′‖, such that ∀x,x′ ∈ X , β > 0.
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Now, we are ready to present the inclusion associated with
the Proximity operator, which is normally defined for every
(p,x) ∈ X × X and η > 0 as

p ∈ x+ η∂f(x)⇔ x ∈ (Id + η∂f)−1(p), (1)

where p is to be mapped into x, and proxηf = (Id+η∂f)−1

is the Proximity operator (i.e. the resolvent of subgradient ∂f ).
Furthermore, the inclusion above is equivalent to the unique
solution of the following optimization problem

proxηf : p→ argmin
x∈X

1

2η
‖p− x‖2 + f(x), (2)

another definition of the Proximity operator mapping. In [7]
information on Proximal calculus, and particular closed-form
formulations for typical Proximity operators are given.

Another important aspect is how to define First and Second-
Order Splitting methods, see [5], [10], [11] and [8]. The
difference relies on the absence or use of second order
information. A typical Second-Order method is the Newton
method, which uses the inverse of the Hessian, requiring
the objective function to be twice differentiable. However,
second order information can be defined more broadly, as
the inverse of some linear operator L or L∗L that appears
in the objective function. This is akin to solving a linear
equation, which arises in the case that all terms in the objective
function are either linear or quadratic ( [5], part 4). Further, it
often contains the function’s curvature information, permitting
a more direct route to the minimum/ maximum. Moreover,
Second-Order methods require this operator inversion to have
relatively efficient implementation. On the other hand, First-
Order methods only rely on linear operators, gradients and
Proximity operators of functions (L, L∗, ∇f , proxηf , respec-
tively), without operator inversion.

Instinctively, it is expected that Second-Order methods will
offer faster convergence rates than First-Order ones, presuming
efficient exploitation of the problem’s structure (e.g. matrix
factorization, splitting of the objective function, closed-form
formulations). Additionally, our work focus on problems with
nonsmooth functionals, so iterative approaches like Proximal
algorithms are necessary.

The remainder of this report is organized as follows. Section
II introduces relevant Second-Order and First-Order Proxi-
mal Algorithms: Alternating Direction Method of Multipliers
(ADMM), and Generic Proximal Algorithm (by Laurent Con-
dat). Optimization problem formulation, convergence condi-
tions, and algorithm specification is given. Afterwards, we use
two applications from the inverse problems in imaging domain
to exemplify convergence rate performance, in an experimental
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fashion; whilst at the same time providing algorithm imple-
mentation, convergence and computational analysis. We start
with super-resolution image deblurring, in section III, and
then finish with hyperspectral image segmentation, in section
IV. Lastly, in section V, we present some remarks about the
algorithms, and their associated convergence results.

II. ALGORITHM DEFINITION AND SPECIFICATION

Now we introduce the framework for the Proximal Algo-
rithms that will be used throughout the document.

A. Alternating Direction Method of Multipliers - ADMM

First off, we introduce a Second-Order Proximal algorithm,
a version of the Alternating Direction Method of Multipliers
(ADMM) [2] [3] [5] [12] [4] [13], also known as Split Breg-
man, or Douglas-Rachford Splitting (on the Dual problem).
This is a popular Primal-Dual Splitting strategy for large-scale
convex optimization, with a wide array of applications [2].

We will adopt an ADMM approach akin to [14] [3] [15],
leading to Algorithm 1. In order to understand how a general-
ized (convex) optimization problem is mapped into Algorithm
1, we start with the subsequent unconstrained minimization
problem:

min
z∈Rd

Φ(z) = min
z∈Rd

f1(z) + f2(Gz), (3)

where f1 : Rd → R such that f1 ∈ Γ0(X ), f2 : Rp → R such
that f2 ∈ Γ0(X ), while G ∈ Rp×d has full column rank and
is given by

G = [H∗(1) · · ·H∗(j) · · ·H∗(J)]∗, (4)

where linear operators H(j) ∈ Rpj×d are arbitrary matrices
such that p = p1 + · · ·+ pJ . Further, f2 can also be given by

f2(v) =

J∑
j=1

gj(v
(j)), (5)

where gj : Rpj → R such that gj ∈ Γ0(X ), and v(j) ∈ Rpj
such that v = [v∗(1) · · ·v∗(J)]∗, with accordance to v ∈ Rp;
and therefore we can have v = Gz.

Accordingly, problem (3) can take the following alternative
form

min
z∈Rd

Φ(z) = min
z∈Rd

f1(z) +

J∑
j=1

gj(H
(j)z), (6)

As a result, it reveals both function and variable Splitting in
ADMM, by use of gj and v(j) respectively.

Now, considering the problem defined in (6) and choosing
f1(.) = 0, ADMM algorithm structure is fully defined in
Algorithm 1, which includes variation of µ, algorithm step-
size parameter, and α, relaxation step, as seen in [2]. Jointly,
µ, also known as augmented Lagrangian penalty parameter,
and vector d(j) ∈ Rpj such that d = [d∗(1) · · ·d∗(J)]∗ ∈ Rp,
define the algorithm’s Lagrange multipliers. In fact, the values
of vector d and µ are the variables and the step of the Dual
problem, respectively; while z and auxiliary vector v represent
the variables of the Primal problem [2].

Step 6 in Algorithm 1 is the relaxation process (over-
relaxation if α > 1), which has been found to increase
convergence if α ∈ [1.5, 1.8], see [2].

From step 10 to 25, every n iterations (to lower computa-
tional overhead), ADMM’s residues rp and rd are computed.
These are then used for µ value variation decision, multiplying
or diving by ε, if they differ in a factor of ζ or more, We use the
values recommended in [2], ε = 2 and ζ = 10. Moreover, if
indeed µ changes, then operators like proxgj/µ(.), or any pre-
calculated structures dependent on µ, must be updated before
the next iteration.

Algorithm 1 ADMM Structure
1: init set k = 0, ϑ = 0, rp ∈ R, rd ∈ R, choose µ > 0,
n ∈ N, α ∈ (0, 2), z0, v0, d0.

2: repeat
3: zk+1 ←

(∑J
j=1H

∗(j)H(j)
)−1∑J

j=1H
∗(j)(v(j)k +

4: +d
(j)
k

)
,

5: for j = 1 to J do
6: ϑ(j) = αH(j)zk+1 + (1− α)v

(j)
k ,

7: v
(j)
k+1 ← proxgj/µ

(
ϑ(j) − d(j)k

)
,

8: d
(j)
k+1 ← d

(j)
k −

(
ϑ(j) − v(j)k+1

)
,

9: end for
10: if n iterations passed then
11: rp =

(∑J
j=1 ‖H(j)zk+1 − v(j)k+1‖2

)1/2
,

12: rd = µ
(∑J

j=1 ‖H∗(j)(v
(j)
k+1 − v

(j)
k )‖2

)1/2
,

13: if rp > ζrd then
14: µ← εµ,
15: for j = 1 to J do
16: d

(j)
k+1 ←

d
(j)
k+1

ε ,
17: end for
18: end if
19: if rd > ζrp then
20: µ← µ

ε ,
21: for j = 1 to J do
22: d

(j)
k+1 ← εd

(j)
k+1,

23: end for
24: end if
25: end if
26: k ← k + 1,
27: until stopping criterion is satisfied

The stopping criteria can be given by some relative error
on the optimal (minimum) solution z, or on the objective
function (6). However, other criteria like a tolerance bound
on ADMM’s residues rp and rd as in [2], or a maximum
number of iterations for execution is also used.

Further, ADMM convergence is guaranteed by Eckstein-
Bertsekas: considerations about the generalized version of
ADMM are found in [16]; however, for the ADMM version
found in this section, see [3]. Hence, for this version of
ADMM to converge we define the following theorem:

Theorem 1 (modified Eckstein-Bertsekas):
• G ∈ Rp×d has full column rank,

• f1, ∀j gj ∈ Γ0(X ),
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• µ > 0,

• d ∈ Rp,

• Set of minimizers is nonempty.
Then, if the set of minimizers is nonempty, sequence (zk)k∈N
generated in Algorithm 1 converges to a set of minimizers ẑ
of (3).

Furthermore, linear convergence, at this point, is not possi-
ble to guarantee since most proofs rely on either strict (or even
strong) convexity of the function terms present in objective (6).
Still, recent work on the overall convergence of the ADMM,
particularly on linear convergence, can be found in [17], [18],
[19].

Indeed, given the applications that will be showcased,
none has an objective function where its terms are strictly
convex. Nevertheless, the overall objective is expected to be
strictly convex, because we will be dealing with regularization
applications, even though sometimes this turns out not to be
enough. So, as stated before, we will be dealing with ill-
posed problems that have this characteristic. Seeing that we
just seek to prove, experimentally, that in certain applications a
specialized ADMM is more advantageous than other recent or
relevant Proximal algorithms, convergence guarantee Theorem
1 is enough.

Moreover, as discussed in [2], µ variation during runtime
(step 10 to 25) eventually leads to µ stabilization, and eventual
faster ADMM convergence. Hence, this being assumed, all
arguments made for static-µ ADMM about convergence, also
hold here. In fact, now initial µ value is somewhat less
relevant for convergence, still, a tailored value may shorten
µ stabilization (i.e. an initial optimal value, since update may
take some iterations, as defined by the user).

Lastly, for this version of ADMM, as specified in Algorithm
1, we can easily see that in step 4, the second order information
is defined by

(∑J
j=1H

∗(j)H(j)
)−1

, as described in the
Introduction.

B. Generic Proximal Algorithm

Now we finally introduce a First-Order strategy, the Generic
Proximal Algorithm. This Primal-Dual convex formulation en-
compasses a family of First-Order algorithms, and it has been
devised by L. Condat in [8], [11]. It provides a solution to the
subsequent generalized unconstrained (convex) optimization
problem:

min
z∈Rd

Φ(z) = min
z∈Rd

f1(z) + f2(z) +

J∑
j=1

gj(H
(j)z), (7)

where f1, f2 : Rd → R and gj : Rpj → R, such that f1,
f2, gj ∈ Γ0(X ); H(j) ∈ Rd×pj operators are linear and
bounded; f1 is differentiable on Rd and its gradient ∇f1 is
β-Lipschitz continuous, for some real constant β > 0; the set
of minimizers is nonempty.

In [11] (the Proposed Algorithm 1), L. Condat presents
a generic algorithm for solving problem (7). Algorithm 2
displays Condat’s proposal, where u(j) ∈ Rpj such that
p = p1 + · · · + pJ is comprised of the variables of the

Dual problem. For clarity’s sake, one defines z̃k+1 just as
an auxiliary variable.

Algorithm 2 Generic Proximal Algorithm - L. Condat

1: init choose τ > 0, σ > 0, ρ > 0, z0, ∀j u(j)
0 .

2: repeat
3: z̃k+1 ← proxτf2

(
zk − τ

(
∇f1(zk)+

4: +
∑J
j=1H

∗(j)u
(j)
k

))
,

5: zk+1 ← ρz̃k+1 + (1− ρ)zk,
6: for j = 1 to J do
7: ũ

(j)
k+1←proxσg∗j

(
u
(j)
k + σH(j)(2z̃k+1 − zk)

)
,

8: u
(j)
k+1 ← ρũ

(j)
k+1 + (1− ρ)u

(j)
k ,

9: end for
10: k ← k + 1,
11: until stopping criterion is satisfied

In relation to convergence guarantees, whose proofs can be
found in [8], though also enunciated in [11], two theorems are
defined:

Theorem 2 (Full Generic Proximal Algorithm): Suppose that
the parameters in Algorithm 2 satisfy the following
• τ

(
β
2 + σ

∥∥∥∑J
j=1H

∗(j)H(j)
∥∥∥) < 1, where β is the

already defined Lipschitz constant.

• ρ ∈]0, 1], where ρ is the relaxation constant.
Then both sequences (z̃k)k∈N and (zk)k∈N generated in
Algorithm 2 converge to a set of minimizers ẑ of (7).

Theorem 3 (Chambolle-Pock Algorithm): Suppose that
f1(.) = 0, and that the parameters in Algorithm 2 satisfy the
following
• τσ

∥∥∥∑J
j=1H

∗(j)H(j)
∥∥∥ ≤ 1,

• ρ ∈]0, 2[, where ρ is the relaxation constant.
Then both sequences (z̃k)k∈N and (zk)k∈N generated in
Algorithm 2 converge to a set of minimizers ẑ of (7).

Moreover, from the generic approach in problem (7), we can
further construe other relevant Proximal algorithm versions,
with a relaxation option.

In fact, in the case of f1(.) = 0, the proposed algorithm
reverts to the (Primal-Dual) Chambolle-Pock (CP) method
[6], with additional relaxation. In this case, according to
Theorem 3, we should allow for a value ρ close to 2 [11],
instead of ρ = 1 [6], which can significantly accelerate
convergence. Furthermore, convergence is guaranteed with the
choice τσ

∥∥∥∑J
j=1H

∗(j)H(j)
∥∥∥ = 1, which is recommended

by [11] in practice, whereas τσ
∥∥∥∑J

j=1H
∗(j)H(j)

∥∥∥ ≤ 1 was
given by [6].

However, for J = 0 one simply minimizes f1(z) + f2(z),
and the proposed algorithm reverts to the (Primal) Forward-
Backward (FB) method [7], with additional relaxation.

Yet, other ways to assign the functions in (7) exist, and we
will explore that fact in our applications.

Generally, using function f1 whenever possible is probably
better for convergence speed.

Firstly, because of the serial way variables are updated: the
step of the gradient descent with respect to f1 updates and
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enhances z, and then this new value is used to update the
several u(j) (i.e. dual variables). In contrast, variables u(j)

are updated independently, with respect to gj functions, before
being basically averaged to form the new estimate of z.

Secondly, subgradient methods, such as Proximal algo-
rithms, are at best as fast as direct gradient methods when
the function at play is differentiable (in this case f1), though,
usually they are slower. So, once more, if one of the function
terms in the objective is differentiable, it should be assigned
to f1, as there will be the least cost to convergence. Hence, all
things being equal, one could roughly say Forward-Backward
algorithm, if applicable, is preferred to Chambolle-Pock.

III. APPLICATIONS IN INVERSE PROBLEMS IN IMAGING:
SUPER-RESOLUTION TOTAL VARIATION DEBLURRING

(SR-TV)

A. Super-Resolution Total Variation (SR-TV) Deblurring:
Problem Definition

First, we define the blurring process, and then make an in-
troduction to the Total Variation (TV) deblurring formulation.

In image blurring, let x ∈ RN be the column-vectorized
original image (each entry is a grey-scale pixel intensity),
y ∈ RN be the vectorized blurred image, and w ∈ RN
be a noise vector, and T ∈ RN×N a block Toeplitz linear
operator defining the (blurring) convolution applied to x. N
is the number of pixels of a n× n image. So, we have that

y = Tx+w (8)

where element wj , from w, in the case of white Gaussian
noise, is such that wj ∼ N (0, σ2

BSNR) - BSNR is the Blurred
Signal-to-Noise Ratio.

Now, since such a problem is usually ill-posed, estimation
using x̂ = T−1y is not usually an option; even if T was
known and invertible, noise term w would still render it
ill-posed. Actually, in order to properly accomplish image
deblurring, one has to recur to regularization and perhaps
additional constraints.

In addition, in Super-Resolution (SR) problems, operator T
encapsulates further transformations. SR problems have as an
objective the restoration of a high-resolution image x ∈ RN ,
from a low-resolution one measured as ym ∈ RN/S . If no
decent regularization is applied, then this type of problem is
extremely ill-posed, since an infinity of high-resolution images
x exist for a specific ym. A scale factor Ds typically defines
image size down-sampling, with finite support size of S =
Ds×Ds pixels.

An effective regularizer for ill-posed inverse problems in
imaging is the TV semi-norm. Subsequently, the deblurring
problem can be described as a convex optimization problem
using the TV regularizer.

Generally, in SR problems, image estimate x̂ for TV-based
deblurring can be defined as

x̂ = argmin
x∈RN

Φ(x) (9)

= argmin
x∈RN

1

2
‖T (x)− ym‖2 + λTV ‖Dx‖iso, (10)

T ( . ) = M(A . ), (11)

where the first term of objective function (10) sees a quadratic
penalty as the data-fidelity term (logarithmic penalties are
also used, depending on noise type). The second term is a
smoothness regularization term, where ‖D .‖iso is the two-
dimensional TV isotropic semi-norm, as in [5], [11]. Further,
TV isotropic semi-norm is indeed nonsmooth, which can be
seen in its definition ahead.

Operator D ∈ R2N×N is a linear convolution, containing
the concatenated horizontal and vertical discrete gradient op-
erators, with periodic conditions, given by:

D =

[
Dh

Dv

]
=

[
Id(h) ⊗ Daux(h)
Daux(v) ⊗ Id(v)

]
, (12)

such that, for some b ∈ N+ and k ∈ {v, h}, we have

Daux(k) =



−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
1 0 0 · · · 0 −1


∈ Rb×b,

where Id(h) ∈ Rnc×nc and Id(v) ∈ Rncp×ncp are identity
matrices; Daux(h) ∈ncp×ncp and Daux(v) ∈nc×nc are aux-
iliary discrete gradient matrices; with nc as the number of
columns in image x (i.e. image is size nc×nc), while ncp as
the number of pixels per image column.

Then we have that for some i-th pixel ‖.‖iso : RN ×RN →
R is defined as

‖(uh, uv)‖iso =

N∑
i

√
u2hi + u2vi, (13)

where (uh, uv) ∈ R2N is the output of operatorD, concatenat-
ing horizontal and vertical vector results. In addition, λTV > 0
is a tunable tradeoff parameter, dependent on BSNR and linear
convolution A.

Moreover, factorization of T : RN → RN/S in (11)
allows its representation by two distinct linear operators,
M : RN → RN/S and A : RN → RN . The former in-
cludes both down-sampling and unknown boundary conditions
(UBC) operations; whilst A is the equivalent (blurring) linear
convolution operator if T was block circulant (i.e. periodic
boundaries), and no down-sampling existed. This type of
factorization, particularly for UBC, has already been proposed
in [14]; whilst other work has assumed T as having periodic
boundaries for simplicity [15] [3].

Further, M is a (linear) masking operator, filtering out
the subset of pixels that either lay outside the original high-
resolution boundary of x, or that are not selected by the down-
sampling process. Besides, under UBC, we can assume linear
operators A and D to be block circulant matrices, so they can
be DFT factorized (2D Discrete Fourier Transform). However,
size of image N must be increased to include a sleeve of size
l around image x, since the blurring (kernel) support present
in A has a size of KS = (2l+ 1)× (2l+ 1) pixels, so UBC
can be respected [14].
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B. Super-Resolution Total Variation (SR-TV) Deblurring: Ap-
plying ADMM

Now, applying the structure of ADMM, in (6), to the
regularized problem in (10) and (11), the splitting process
takes the form (J = 2):

z ∈ RN , z = x, (14)

v(1) ∈ RN , v(1) = H(1)x, (15)

v(2) ∈ R2N , v(2) = H(2)x, (16)

H(1) : RN → RN , H(1) = A, (17)

H(2) : RN → R2N , H(2) = D, (18)

f1 : RN → {0}, f1(.) = 0, (19)

g1 : RN → R, g1(.) =
1

2
‖M .− ym‖2, (20)

g2 : R2N → R, g2(.) = λTV ‖ . ‖iso. (21)

So, taking the above into account, proximity operators for g1
and g2 must be clarified. For g1 and g2, using the structure in
(2), the proximity operators are defined as

proxg1/µ(.) = argmin
v(1)∈RN

µ

2
‖.− v(1)‖2 +

1

2
‖Mv(1) − ym‖2

=
(
M∗M + µId

)−1[
M∗ym + µ(.)

]
, (22)

proxg2/µ(.) = argmin
v(2)∈R2N

µ

2
‖.− v(2)‖2 + λTV ‖v(2)‖iso

= vect−soft

(
λTV
µ

, .

)
. (23)

Both proximity operator (22) and vector-soft operator (23)
have been formulated previously, and can be found in [7], [20],
[21]. Moreover, the operator in (23) can be further defined. So,
for every pixel i ∈ (1, · · · , |N |), we define a pair-wise group(
uhi, uvi

)
∈ R2 obtained from v(2), the output of operator D

(16), such that we have

vector−soft

(
λTV
µ

, .

)
:

(
uhi, uvi

)
→
(√∣∣uhi∣∣2 +

∣∣uvi∣∣2 − λTV
µ

)+√∣∣uhi∣∣2 +
∣∣uvi∣∣2 .

(
uhi, uvi

)
, (24)

where |.| is the modulus, and (.)+ is the positive part.
Now it is important to explain that the inversion in (22) is

indeed computationally efficient. Following the same approach
as in [14], exploring the structure in M∗M , we see that
it defines a diagonal matrix. In fact, the diagonal registers
value 1 for pixels that are selected by masking matrix M ,
and 0 for those not selected. Meanwhile, matrix summation
(M∗M + µId) results in a matrix with diagonal values all
different from 0, as long as µ > 0 - guaranteed by ADMM
definition, in Algorithm 1. Hence, this resulting matrix is eas-
ily invertible, in that diagonal values are inverted individually.
In addition, M∗ym can be pre-computed in the beginning,
while computation of (M∗M + µId) is only necessary if µ
value is changed, during Algorithm 1.

On the other hand, from previous section III-A, we know
that both A and D can be DFT factorized (a type of Eigende-
composition), such that some H(j) = F ∗ΛH(j)F ; where F
is the unitary DFT matrix (i.e. F−1 = F ∗), and ΛH(j) is the
diagonal matrix containing the DFT coefficients of operator
H(j). So, all matrix products invoking operators A, A∗, D,
D∗ can be efficiently calculated via FFT algorithm with cost
O(Nlog(N)). In fact, for some vector a, Fa is the Fourier
Transform of a, while F ∗a is the inverse Fourier Transform.

Furthermore, computation of step 4 in Algorithm 1 becomes

xk+1 =
(
A∗A+D∗D

)−1[
A∗(v

(1)
k + d

(1)
k ) +D∗(v

(2)
k

+ d
(2)
k )
]
, (25)

where matrix
(
A∗A+D∗D

)−1
, the second order information

part, can be translated into a simple diagonal inversion in DFT
space as in [3], [14]. So, after some manipulation, we now
have(
A∗A+D∗D

)−1
=
[
F ∗
(
|ΛA|2+|ΛDh

|2+|ΛDv
|2
)
F
]−1

= F ∗
(
|ΛA|2 + |ΛDh

|2 + |ΛDv
|2
)−1

F , (26)

where |ΛH(j) |2 corresponds to the squaring of matrix ΛH(j)

diagonal values. So, just for the sake of clarification, we
obviously have

A∗A = F ∗|ΛA|2F . (27)

Further, taking into account the definition of D in (12):

D∗D = D∗hDh +D∗vDv = F ∗(|ΛDh
|2 + |ΛDv |2)F , (28)

and also, for some vector u = [u∗1 u
∗
2]
∗ ∈ R2N , we have

D∗u = D∗hu1 +D∗vu2 = F ∗(Λ∗Dh
Fu1 + Λ∗Dv

Fu2) (29)

and surely, for some vector a ∈ RN , we have

D =

[
Dh

Dv

]
a =

[
F ∗ΛDh

Fa
F ∗ΛDvFa

]
. (30)

In relation to convergence conditions, in section II-A, The-
orem 1: one has that G = [A∗D∗]∗ is full column rank, due
to D being the invertible discrete gradient operator, which can
be seen in (12), where all its columns are linearly independent,
so G is invertible as well; further, both assigned functions g1
and g2 - (20) and (21), respectively - belong to set Γ0(X ); and
we assume the set of minimizers is nonempty. Hence, ADMM
convergence for the TV deblurring problem (10) is assured.

Lastly, cost of operator computation for this algorithm either
incurs in O(Nlog(N)) if using FFT, or O(N) for all others.
In fact, vector sums, proximity operators (with M∗ym term
being pre-computed for g1 (22)) and matrix inversions (in the
case of (22)) have O(N) cost.

C. Super-Resolution Total Variation (SR-TV) Deblurring: Ap-
plying Proximal Algorithm I (from Generic Proximal Algo-
rithm)

In [11], Algorithm 2 was already specified for the TV
deblurring problem, however without the Super-Resolution
component (i.e. operator M = Id). So, now we adapt that
approach for the Super-Resolution TV deblurring problem in
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(10), which is much more ill-posed. In this report we will call
this algorithm the Proximal Algorithm I (ProxAlg I) . Hence,
we now specify (J = 1):

z ∈ RN , z = x, (31)

u(1) ∈ R2N , (Dual Problem V ar), (32)

H(1) : RN → R2N , H(1) = D, (33)

f1 : RN → R, f1(.) =
1

2
‖MA .− ym‖2, (34)

f2 : RN → {0}, f2(.) = 0, (35)

g1 : R2N → R, g1(.) = λTV ‖.‖iso. (36)

Further, we now formulate ∇f1(.), proxσg∗1 (.), and
proxτf2(.), for complete algorithm definition:

∇f1(.) = A∗
(
M∗MA . −M∗ym

)
, (37)

proxτf2(.) = Id . , (38)

and using
(
uhi, uvi

)
∈ R2, the output of operator D, we have

that

proxσg∗1 (.) :
(
uhi, uvi

)
→

→
(
uhi, uvi

)
/max

{√(
uhi
)2

+
(
uvi
)2
/λTV , 1

}
, (39)

where all can be efficiently computed. Indeed, in section III-B,
structures M∗M and M∗ym, which also appear in (37), have
already been exploited; reducing, in this case, the former to a
diagonal matrix product, and the latter to a pre-computation.
Meanwhile, proximity operators (38) and (39) have already
been presented in [11], plus they can be deduced based on the
properties in [7]. Further, operators A, A∗, D, D∗ can all be
computed here in the same way as they were in the previous
chapter III-B for ADMM - using DFT factorization.

In relation to algorithm convergence, we notice that: f1,
f2, g1 ∈ Γ0(X ); H(1) is a bounded liner operator; f1
is differentiable and its gradient is β-Lipschitz continuous
(β defined ahead); and we assume the set of minimizers
is nonempty. Hence, the algorithm is convergent towards a
solution.

Moreover, we use Theorem 2 for convergence analysis,
since f1(.) 6= 0. So, this theorem can be used for choosing
near optimum initial algorithm parameters, whilst making sure
they comply with convergence criteria. Hence, we can now
associate the value of τ to the chosen initial value of σ, such
that

τ <
1

β/2 + σ‖D∗D‖ ⇒ τ =
0.99

‖A‖2/2 + 8σ
, (40)

where we know that ‖D∗D‖ ≤ 8 from [11] and [6]; and it can
be proved that Lipschitz constant is β = ‖A‖2, corresponding
to the spectral component of convolutionA (i.e. its eigenvalue)
with the highest absolute value - since we will be using a low-
pass filter, which can be normalized for unitary DC gain, one
easily has that ‖A‖2 = 1. So, according to Theorem 2, now
we only have to calibrate Algorithm 2 for σ and ρ: with σ
we only have to choose a value that leads to convergence, and
then using equation (40) we get an optimal value for τ ; with
ρ we will have to choose it on a trial-and-error basis, though
empirically, the best results tend to be near ρ = 1.

D. Super-Resolution Total Variation (SR-TV) Deblurring: Ap-
plying Chambolle-Pock (from Generic Proximal Algorithm)

As an alternative, we take the formulation in (7), assigning
its functions differently to that of III-C, the previous section.
So, if we define f1(.) = 0, formulation (7) reverts to a relaxed
version of Chambolle-Pock (CP) [6] [11], this was suggested
by L. Condat [11] as an alternative, but not fully defined or
implemented.

Taking into account Algorithm 2, and the Super-Resolution
TV deblurring problem in (10), we now define another setup
(J = 2):

z ∈ RN , z = x, (41)

u(1) ∈ RN/S , (Dual Problem V ar), (42)

u(2) ∈ R2N , (Dual Problem V ar), (43)

H(1) : RN → RN/S , H(1) . = MA . , (44)

H(2) : RN → R2N , H(2) = D, (45)

f1 : RN → {0}, f1(.) = 0, (46)

f2 : RN → {0}, f2(.) = 0, (47)

g1 : RN/S → R, g1(.) =
1

2
‖.− ym‖2, (48)

g2 : R2N → R, g2(.) = λTV ‖.‖iso. (49)

Additionally, it is important to clarify some operators that
originate from this setup. As defined before, proxσg∗2 takes
the same form as (39), and proxτf2 the same as (38). Besides,
taking into account the definitions of proximity operator, plus
the (Fenchel) conjugation property, present in [7], one can now
define

proxσg∗1 (.) =
1

1 + σ

[
.− σym

]
, (50)

this result is fully explained in Appendix A. In addition, we
have that operator H∗(1) = A∗M∗, and also, operators A,
A∗, D, D∗ can all be computed using DFT factorization.

In relation to convergence, we notice that again all H(j)

are linear and bounded; all function terms belong to Γ0(X );
and we assume a nonempty set of minimizers. Since f1 is not
used, no further considerations are necessary.

Conversely to III-C, we now use Theorem 3 from Generic
Proximal Algorithm, since f1(.) = 0. Once more, it is possible
to define a near optimal value for τ based upon choosing σ,
while at the same time complying with convergence condi-
tions. So, now we can define:

τ ≤ 1

σ‖A∗A+D∗D‖ ⇒ τ =
1

σ
(
‖A‖2 + ‖D∗D‖

) , (51)

where values for ‖A‖2 and ‖D∗D‖ in III-C also apply here.
Moreover, the above assignment for τ was obtained using the
triangle inequality property for norms; the use of equality in
this expression, and a value for ρ near 2 is based upon section
II-B on parameter selection.

E. Super-Resolution Total Variation (SR-TV) Deblurring: Re-
marks on Generic Proximal Algorithm (Algorithm 2)

In terms of operator complexity costs for the Generic
Proximal Algorithm in the SR-TV problem (10), as stated in



7

[11], these are all O(N) or O(Nlog(N)), the latter associated
with operators A and D, due to their FFT implementations.

In addition, we should discuss the options made regarding
function assignment in both sections III-C and III-D.

Firstly, any efficient implementation that solves SR-TV
problem (10) needs to decouple the function term λTV ‖D.‖iso
into efficient closed-form computations. As seen earlier, this
decoupling, into λTV ‖.‖iso and D, leads to effective operators
being used (e.g. the vector-soft(. , . ) proximal operator). Not
doing so leads to a situation that is intractable, or numerical
at best. Therefore, the only efficient way is to use the last
term

∑J
j=1 gj(H

(j)z) in (7), which singles out a Forward-
Backward implementation - FB only uses f1 and f2, with
J = 0.

Secondly, assigning the term 1
2‖M(A .)−ym‖2 to f2 will

lead to an intractable operator as well:

proxτf2(.) = (Id + τA∗M∗MA)
−1

[τA∗M∗ym + . ] ,
(52)

since the inversion of (Id + τA∗M∗MA) is not possible
in due time, mainly because there is no exploitable structure,
much like a diagonal matrix or a DFT factorization.

Hence, we are left with only two options, which we
described earlier in III-C (Proximal Algorithm I) and III-D
(Chambolle-Pock). The first implementation is preferred, since
it capitalizes on ∇f1(.) for possible better convergence.

F. Super-Resolution Total Variation (SR-TV) Deblurring:
Practical Results

In this section, we present the results for algorithm con-
vergence, for the SR-TV (Super-Resolution Total Variation)
problem in (10), all algorithms solve the same objective
function.

Images suffer Gaussian blurring, with different sizes of
kernel (KS) support; also, different scale factors (Ds) support
sizes for SR are used - with Ds = 1 representing no SR, i.e.
no down-sampling.

White Gaussian Noise was added at a level of 30 dB BSNR,
for each image. Lowpass (linear) convolution operators have
been normalized for unitary DC gain, i.e. ‖A‖ = 1.

Input parameters have been tailored for all algorithms,
to speed up convergence, taking into account the particular
scenario (image, blurring and scale factor). In Appendix F, we
can see the algorithm parameter selection process and results,
which were then used for the experiments in this section, for
SR-TV.

In relation to the TV deblurring parameter λTV , Cameraman
uses 0.02, and all other use 0.2.

Results comprised grayscale images taken from the “USC
SIPI Image Database”: Cameraman, Elaine and Man in .tiff
format. Sizes are 256x256, 512x512, and 1024x1024 pixels
respectively.

Accordingly, results will be presented for Alternating Direc-
tion Method of Multipliers (ADMM), Chambolle-Pock (CP),
and Proximal Algorithm I (ProxAlg I). These will be evalu-
ated on the basis of their convergence regarding the objective
function relative error, for the optimal solution. Algorithms ran
until an error of 1% was reached. The optimal solution was
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Fig. 1. Variation of Image size, and related times to convergence, until a
1% objective function Φ(.) relative error was reached. Each algorithm is
presented: ADMM, Proximal Algorithm I (ProxAlg I), Chambolle-Pock (CP).
Constant values for this scheme: Ds = 1; KS = 3. Cameraman uses λTV =
0.02, while other images use 0.2.

obtained via a long-run of ADMM, for each scenario. ADMM
ran until a tolerance of 10−20 was reached for its residuals,
otherwise it ran 10,000 iterations maximum.

Lastly, in this section results were obtained using the
”Mighty4” computer available in the lab, with OS Linux, and
MATLAB software package.

1) Case I – Image Size (Without Downsampling) - Fig.1:
First we start by showcasing image size variation and its
effect on convergence performance. Fig.1 follows the order of
increasing image size, from Cameraman (256x256), through
Elaine (512x512) to Man (1024x1024). Also, the results share
the same scale factor size Ds = 1 and Gaussian Blur kernel
size KS = 3. It is clear that generally CP has poor conver-
gence compared with both ADMM and ProxAlg I. ADMM
always manages to reach the lower limit of 1% error first,
thus having the lowest convergence time. Further, results are
also dependent on the content of the image that we wish to
apply deblurring to, not only its size.

2) Case II – Blur Size (Super-Resolution) - Fig.2: Now
we reveal the Blur kernel size KS impact on algorithm
convergence. Fig.2 results are for Man image, and scale
factor size Ds = 3. Distinct Blur kernel sizes KS = 3
and KS = 5 pixels are tested. Also, there is no point in
testing KS = 1, since only a normalized gain of 1 would be
applied to the image pixels, without any consequent blurring.
Further, the figure exposes the fact that as we increase Blur
kernel size, convergence rates tend to slow down. Moreover,
increasing Blur kernel size leads to clear divergence in rates,
notably, ADMM and ProxAlg I see their convergence time
gap increased. On both scenarios CP rate is weaker, and
ADMM has a clear edge on CP and ProxAlg I, achieving
the lowest convergence time.

3) Case III – Scale Factor (Super-Resolution) - Fig.3:
Lastly, we now focus on scale factor size Ds influence on
convergence. In Fig.3, the results pertain to Man image, Blur
kernel size KS = 5, and variable scale factor size Ds: 1,
3 and 5 pixels. On all three scenarios CP and ProxAlg I
convergence times are evidently weaker than ADMM. Also,
increasing the scale factor only hinders the convergence of
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Fig. 2. Variation of (Gaussian) Blur kernel size KS, and related times to
convergence, until a 1% objective function Φ(.) relative error was reached.
Each algorithm is presented: ADMM, Proximal Algorithm I (ProxAlg I),
Chambolle-Pock (CP). Constant values for this scheme: Man (1024x1024)
image; Ds = 3; λTV = 0.2.
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Fig. 3. Variation of Scale Factor Ds support size, and related times to
convergence, until a 1% objective function Φ(.) relative error was reached.
Each algorithm is presented: ADMM, Proximal Algorithm I (ProxAlg I),
Chambolle-Pock (CP). Constant values for this scheme: Man (1024x1024)
image; KS = 5; λTV = 0.2.

these two algorithms, leaving ADMM relatively more or less
unscathed (roughly the same convergence time).

4) Case IV – Lowest Convergence Scenario - Fig.4: In this
specific case, we choose to portray in more detail the lowest
convergence case for the previous sections III-F1, III-F2 and
III-F3 - which by the way a very ill-posed scenario. So, this
is an opportunity to showcase results for each iteration within
a scenario, in other words, the objective function relative Φ(.)
error vs. time, the convergence curve. The scenario is clearly
Man image (1024x1024), Ds = 3, KS = 5 with λTV = 0.2.
It can be seen in Fig.4.

Interestingly, we notice that ADMM converge is not exactly
decreasing monotone, though monotonicity is not guaranteed
by ADMM’s convergence conditions. In fact, neither Generic
Proximal Algorithm’s (Algorithm 2) convergence conditions
guarantees this.

Moreover, more results are presented for this scenario in Ap-
pendix C, though some results are only updated/ seen every 10
iterations, to avoid computational burden. The results include:
ADMM µ assignment variation; ADMM residuals; duration
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ProxAlg I SR-TV

ADMM SR-TV

CP SR-TV

Fig. 4. Relative error of objective function Φ(.) vs. time, in one entire run
until solution is obtained - convergence curve. For Man image (1024x1024),
Ds = 3, KS = 5, λTV = 0.2. Algorithms are run until 1% objective
function Φ(.) relative error is reached. Each algorithm is presented: ADMM,
Proximal Algorithm I (ProxAlg I), Chambolle-Pock (CP).

of each iteration, for each algorithm, during their runtime;
and blurred, plus deblurred images for each algorithm. It is
noteworthy to say that although per iteration ADMM does
take longer (duration), it offers much less iterations until
convergence is attained.

IV. APPLICATIONS IN INVERSE PROBLEMS IN IMAGING:
HYPERSPECTRAL IMAGE SEGMENTATION (SMLR)

A. Hyperspectral Image Segmentation: Problem Definition
(Sparse Multinomial Logistic Regression - SMLR)

1) Background: In this application, we tackle the problem
of image segmentation for hyperspectral images, such as
those captured from remote sensing instruments. Hyperspectral
image data sets often bring up difficult processing problems,
and particularly in segmentation. Learning high-dimensional
distributions from a limited number of training samples (ill-
posed problem) is still an active area of research.

Discriminative approaches, which learn the class distribu-
tions in high-dimensional spaces by inferring the boundaries
between classes in the feature space, effectively tackle the
aforementioned difficulties. Support vector machines (SVMs)
are among the state-of-the-art discriminative techniques that
can be applied to solve ill-posed classification problems [22],
[23]. Conversely, multinomial logistic regression (MLR) [24]
is an alternative approach to deal with ill-posed problems,
which has the advantage of learning the class distributions
themselves.

MLR, as a discriminative classifier, models the posterior
distributions instead of the joint probability distributions. Fur-
ther, the ability to deal with large input spaces efficiently, and
to produce sparse solutions, is important in high-dimension ill-
posed classification. Effective sparse MLR (SMLR) methods
fulfil these requirements, and can be found in literature [25],
[26]. Plus, different versions have already been implemented
in hyperspectral image classification as well [25], [27], [28],
[29].

More information on the issue at hand, problem formula-
tions and definitions can be found in [25], [27], [26], [24]. In
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fact, we follow the same approach for the learning step. In
this document, however, we will only focus on how to solve
the learning problem using Proximal Algorithms, most notably
ADMM and the Generic Proximal Algorithm, previously de-
fined in sections II-A and II-B respectively.

Moreover, [25] already uses a version of ADMM, though
different from that which is presented in this document. An
experimental comparison in terms of convergence performance
is given for both ADMM approaches - in Appendix D. We will
also adopt the same name for the resulting algorithm: LOR-
SAL (MLR via variable splitting and augmented Lagrangian).

2) Problem Formulation: So, let S ≡ {1, · · · , n} denote
a set of integers indexing the n pixels of a hyperspectral
image; let L ≡ {1, · · · ,K} be a set of K labels; let X =
{X1, · · · ,Xn} ∈ Rd×n denote an image of d-dimensional
feature vectors; let y = (y1, · · · , yn) ∈ Ln be an image of
labels; and let DL ≡ {(X1, y1), · · · , (XL, yL)} ∈ (Rd×L)L

be a training set where L denotes the total number of available
labelled samples. With the aforementioned definitions in place,
the goal is to assign a label yi ∈ L to each pixel i ∈ S, based
on the vector Xi, resulting in an image of class labels y. We
call this labelling.

In segmentation the goal is to compute, based on the
observed imageX , a partition S = ∪iSi such that the pixels in
each element of the partition share some common properties.
Hence, segmentation is when some spatial prior P (y) is being
considered on the y labels, whilst traditional classification
does not assume this.

Further, we can define Y ′ ∈ {0, 1}(K−1)×L as being a
matrix where its columns Y ′i represent the labellings provided
in vector y (1 for the selected class, 0 for the others in
the (pixel’s) column). In addition, other models may be used
to describe the feature space, in such manner, we can have
φ(Xi) ≡ [φ1(Xi), · · · , φl(Xi)]

∗ ∈ Rl defining a vector
of l fixed functions of the input, often termed features.
Moreover, W ≡ [W 1, · · · ,WK ]∗ ∈ Rl×K denotes the
logistic regressors. However, since the distributions ahead in
(53) do not depend on translations of the regressors WK ,
we can take WK = 0 and remove it from W , such that
W ≡ [W 1, · · · ,WK−1]∗ ∈ Rl×(K−1).

Notice however that φ(.) may be linear, with φ(Xi) =
[1,Xi1, · · · ,Xid]

∗, or otherwise nonlinear. In the nonlinear
case, kernels are a relevant example and can be expressed by
φ(Xi) = [1,KrXi,X1 , · · · ,KrXi,Xl

]∗, where KrXi,Xj ≡
Kr(Xi,Xj) and Kr(., .) is some symmetric kernel function;
kernels can improve data separability in the transformed space.
In our report, we present results only for the Gaussian radial
basis function (RBF) kernel (widely used in hyperspectral
image classification), given by Kr(X,Z) = exp(−‖X −
Z‖2/(2ρ2)). Now, if we denote γ as the dimension of φ(X),
then we have γ = d+ 1 for the linear case and γ = L+ 1 for
the RBF kernel (L being the dimension of the training set).

Therefore, modelling the posterior densities using an MLR,
we get the following

P (Y |X,W ) = exp(W ∗φ(X))◦

1
/(

1∗(k−1) exp(W ∗φ(X)) + 1
)(K−1)
k=1

, (53)

where P (Y |W ,X) ∈ R(K−1)×L is a matrix with the densi-
ties for every class vs. pixel, such that probability densities for
every pixel can be defined by vector column P i(Y i|W ,Xi);
also, in (53), we have that ◦ is applying element-wise matrix
product; exp(.) is element-wise; (1∗(k−1) exp(W ∗φ(X)) +

1)
(K−1)
k=1 ∈ R(K−1)×L is a matrix where its columns (per pixel)

have the same value - repeated (K − 1) times; and 1∗(K−1) is
the transpose of a vector column of ones with size (K − 1).

Additionally, we can define the general Softmax function,
which will be used in LORSAL (ADMM), as

P (Y |v) = exp(v∗) ◦ 1
/(

1∗(k−1) exp(v∗) + 1
)(K−1)
k=1

,

(54)

where P (Y |v) ∈ R(K−1)×L, notice that v is transposed
to fit the structure of ADMM, so some of the resulting
expressions for LORSAL will be transposed as well. All the
other operations in (53) apply.

Hence, assuming the data set X , for every i-th pixel, is
conditionally independent of the features given the labels, we
have for the log-likelihood function

`(W ,Y ′) =

L∑
i=1

logY ′∗i P i(Y i|W ,Xi) (55)

=

L∑
i=1

(
K∑
k=1

Y ′kiW
∗
kφ(Xi)− log

K∑
k=1

exp(W ∗
kφ(Xi))

)
,

(56)

where log takes in a single real value, and Y ′ki is an element
of matrix Y ′ for indexes k and i.

In view of the above, densities P i(Y i|Xi) are modelled
as MLRs, whose regressors are learned - either via ADMM
or Generic Proximal Algorithm. On the other hand, prior
P (y) on the labellings y will be described by a multilevel
logistic (MLL) prior Markov Random Field, which encourages
neighbouring pixels to have the same label. The process for
the priors is out of this report’s scope, but can be seen in detail
in [25].

We are now ready to define the learning (optimization)
problem, using the SMLR approach:

Ŵ = argmin
W∈Rγ×(K−1)

Φ(W ) (57)

= argmin
W∈Rγ×(K−1)

−`(W ,Y ′) + λSMLR‖W ‖1 (58)

where ‖.‖1 is the L1-norm, and λSMLR is the tunable regular-
ization parameter. Indeed, ‖W ‖1 corresponds to a Laplacian
prior promoting sparsity on W , forcing many components to
be zero. Therefore, selecting just a few kernel functions, and
as a result enhancing the generalization capacity of the MLR
regressor matrix.

Lastly, notice that though this is a convex problem, it is a
difficult one because `(W ,Y ′) is nonquadratic, and the term
‖W ‖1 is not smooth.
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B. Hyperspectral Image Segmentation: Applying ADMM

So, now using LORSAL (i.e. ADMM) to solve the opti-
mization problem (58), we have the following assignment of
variables and functions:

z ∈ Rγ×(K−1), z = W , (59)

v(1) ∈ RL×(K−1), v(1) = H(1)W , (60)

H(1) ∈ RL×γ , H(1) = φ(X)∗, (61)

v(2) ∈ Rγ×(K−1), v(2) = H(2)W , (62)

H(2) ∈ Rγ×γ , H(2) = Id, (63)

g1 : RL×(K−1) → R, g1(.) = −`( .,Y ′), (64)

g2 : Rγ×(K−1) → R, g2(.) = λSMLR‖ . ‖1. (65)

Moreover, now we have for step 4 of Algorithm 1 the
following:

W k+1 = (φ(X)φ(X)∗ + Id)
−1
[
φ(X)(v

(1)
k + d

(1)
k )

+ (v
(2)
k + d

(2)
k )
]
. (66)

Further, notice that RX = φ(X)φ(X)∗ is the covariance
matrix in the feature space, since we are using a (Gaussian)
RBF kernel for feature representation. Hence, by definition, we
know that RX is a real symmetric matrix, and positive semi-
definite as well. Taking this into account, we can factorize
(RX + Id) into a more efficient structure, in order to compute
its inverse.

Thus, using eigen-decomposition we know that RX =
URX

ΛRX
U∗RX

, where URX
is the unitary matrix with the

(orthonormal) eigen-vectors, and ΛRX
is the diagonal matrix

containing the eigen-values. So now we write

(RX + Id)
−1

= URX
(ΛRX

+ Id)
−1
U∗RX

, (67)

which is helpful in the computation of the inverse, since the
matrix might be high-dimensional, depending on the dimen-
sion of the feature space (i.e. dimension γ). However, since
this matrix does not depend on any changing values, it can be
pre-computed and then used repeatedly.

Further, it becomes important to define how to compute the
proximity operator for g1 and g2.

Firstly, starting with g1, we can define the operator as

proxg1/µ(.) = argmin
t∈Rγ×(K−1)

µ

2
‖ .− t‖2 + g1(t), (68)

however, the above optimization problem is still a difficult
one to solve, since g1(.) = −`( .,Y ′) although convex and
smooth, it is non-quadratic and often large. In fact, there is no
closed-form solution to the problem. Yet, we can approximate
the solution, in a way that is computationally efficient. We can
tackle the problem by replacing −`( .,Y ′) with successive
iterations over a quadratic upper bound, therefore applying
the MM (Majorize-Minimization) algorithm to the proximity
operator in (68), [30]. For the m-th iteration of MM algorithm,

the bound is given by

− `(t,Y ′) ≤ −`(tm,Y ′) + (t− tm) g′(tm,Y
′)+

+
1

2
(t− tm)B′ (t− tm)

∗
= Q′(t|tm), (69)

where Q′(t|tm) is the bound, otherwise known as sur-
rogate function in the MM algorithm. Moreover, B′ =
1/2[Id − 11∗/K] is the second-order (Hessian) upper bound
on −`(tm,Y ′), and g′(.,Y ′) = (P (Y |.)−Y ′) is the gradient
of −`(tm,Y ′) - these are modified versions of the equations
in [24], [25], [26]. In the previous formulations, symbol 1
denotes a vector column of ones (dimension K), and P (Y |.)
denotes the general Softmax function, in (54).

So, straightaway we can combine the surrogate function in
(69) and the operator in (68), following the MM algorithm
principle. Hence, for the m-th iteration we have

tm+1 =
[
proxg1/µ(.)

]
m+1

(70)

= argmin
t∈Rγ×(K−1)

µ

2
‖ .− t‖2 +Q′(t|tm), (71)

such that replacing Q′(t|tm) by the upper bound expression
found in (69), and without the terms that not depend on t, we
therefore have[

proxg1/µ(.)
]
m+1

= argmin
t∈Rγ×(K−1)

µ

2
‖ .− t‖2+

+ t
(
g′(tm,Y

′)−B′t∗m
)

+
1

2
tB′t∗. (72)

Now the formulation above defines a quadratic problem. To
find the minimum we take the first-order derivative, equate to
zero vector, and solve for t

0 = µ ( .− t)∗ + g′(tm,Y
′)−B′t∗m +B′t∗, (73)

which after some algebraic manipulation becomes

tm+1 =
[
proxg1/µ(.)

]
m+1

=

=
[
µ .− g′(tm,Y ′)∗ + tmB

′] (µId +B′
)−1

, (74)

which can be computed several times for better precision,
by feeding the result for the m-th iteration back into the
expression - MM algorithm approximation. Nonetheless, in
reality, for this application, we will only need one iteration to
get a good performance.

For the sake of clarity, in step 7 of Algorithm 1, for v(1)k
update, equation (74) is used, with MM algorithm. Accord-
ingly, tm+1 and tm, in (74), become (v

(1)
k )m+1 and (v

(1)
k )m

respectively. Initial values for the MM, in the k-th iteration of
Algorithm 1, should be v(1)k−1; and for the k = 1 iteration we
should get a warm start with v(1)1 = φ(X)∗W init.

Secondly, we now move on to define the proximity operator
for g2(.), which is straightforward and has been described in
literature before [7], [31], [25]. In fact, it translates into a well
known operator, the soft-thresholding operator - i.e. soft−
thres(., .). Hence, we have

proxg2/µ(.) = soft−thres(λSMLR/µ, . ) :

(tc)
C
c=1 ∈ R→ sgn (tc) . (|tc| − λSMLR/µ)

+
, (75)
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where the above expression is to be understood component-
wise regarding the input of the operator - matrix or vector.
Thus, C represents the cardinality of input t, c the index of
each element tc of t, sgn is the sign function, (.)+ is the
positive part, |.| is the absolute value operator, and λSMLR/µ
is considered the input constant of this operator.

Lastly, the initial estimate of W , i.e. W init, can be
computed in the first iteration through the standard Tikhonov
Regularization method, otherwise known as Ridge Regression
in statistics. Thus, we have the problem

W init = argmin
W∈Rγ×(K−1)

‖Y tik −H(1)W ‖2 + β‖W ‖2, (76)

where β is the regularization parameter, obviously H(1) =
φ(X)∗, and whose solution is therefore

W init = (RX + βId)
−1φ(X)Y tik, (77)

where β was chosen to be β = 10−5, for yielding a good
initial result. Moreover, in this case, Y tik entries are defined
as 10 if pixel is in the class, and −10 if the pixel is outside
the class - instead of 1, 0 respectively, as defined for Y ′.

In terms of algorithm parameters, µ and α are tunable, as
in the previous application SR-TV III-B.

In relation to algorithm convergence, it can be proven using
Theorem 1, in section II-A, such that in this case: one has
that G = [φ(X) Id]

∗ is obviously full column rank, and thus
invertible, even though H(1) = φ(X)∗ may not be invertible,
such is assured by H(2) = Id; also, both assigned functions
g1 and g2 belong to set Γ0(X ); and the set of minimizers
is nonempty. Hence, LORSAL (i.e. ADMM) convergence for
problem (58) is assured.

Finally, computational cost per iteration is determined by the
same value found in [25]. It can be shown that this corresponds
to O (Kγ(L+ γ)) per iteration. Further, if we now assume
that the Gaussian RBF kernel is being used, and so γ = L+1,
then we have O

(
Kγ2

)
, which is precisely the value found in

[25].

C. Hyperspectral Image Segmentation: Applying Forward-
Backward (from Generic Proximal Algorithm)

Here, we now apply the Forward-Backward for SMLR, i.e.
the SMLR FB algorithm. There is not much point in applying
the Chambolle-Pock, since it is preferable to use ∇f1 when
available for better convergence, check section II-B for more
detail. Therefore, we now solve the optimization problem (58),
for J = 0, with the following assignment

z ∈ Rγ×(K−1), z = W , (78)

f1 : Rγ×(K−1) → R, f1(.) = −`( .,Y ′), (79)

f2 : Rγ×(K−1) → R, f2(.) = λSMLR‖ . ‖1. (80)

Now, in order to implement FB we need to define ∇f1(.) and
proxτf2(.).

Firstly, the gradient of f1 has been extensively documented
in literature, and for W is given by

∇f1(W ) = ∇(−`(W ,Y ′)) = −g(W ,Y ′) (81)

=

S∑
i=1

(
P i(Y i|W ,Xi)− Y ′i

)
⊗ φ(Xi) (82)

= φ(X)
[
P (Y |W ,X)− Y ′

]∗
, (83)

where g(W ,Y ′) has been defined in [24] [25] [26], and ⊗ is
the Kronecker product.

Secondly, as previously defined in section IV-B, the prox-
imity operator for f2(.) is also defined by the soft-thresholding
operator:

proxτf2(.) = soft−thres(τλSMLR, . ) :

(tc)
C
c=1 ∈ R→ sgn (tc) . (|tc| − τλSMLR)

+
. (84)

Furthermore, we shall use the same warm-start method as
defined in the previous section for the first estimate of W , i.e.
W init - see Ridge Regression in (77).

Once again, regarding algorithm convergence and parameter
selection, we must resort to the theorems exposed in section
II-B (for Generic Proximal Algorithm). In this case, since
f1(.) 6= 0, we must use the conditions in Theorem 2. In view
of J = 0, we therefore define the first condition to be

τ
β

2
≤ 1⇔ τ ≤ 2

β
⇒ τ = 0.99

2

β
, (85)

and at the same time we solved it for τ , giving us the
optimum step value - the highest value within the convergence
restriction. Again, β is the Lipschitz constant defined for ∇f1,
where f1(.) = −`(W ,Y ), which is given by

β =
1

4
‖φ(X)φ(X)∗‖ =

1

4
‖RX‖, (86)

where proof is given in Appendix B. Further, in the Forward-
Backward implementation of Algorithm 2, σ, dual variables
u(j), operatorsH(j) and proxσg∗j (.), are not used since J = 0.
On the contrary, relaxation step ρ is still tunable, with ρ ∈
]0, 1], though recommended values tend to be near 1, as will be
shown. Moreover, algorithm convergence is guaranteed since
all conditions in II-B hold up here: f1, f2 ∈ Γ0(X ); f1 is
differentiable and its gradient is β-Lipschitz continuous; the
set of minimizers is nonempty.

In terms of computational complexity, the cost per iteration
can be shown to be O (KγL). Further assuming that we are
using an RBF kernel, with γ = L + 1, we then have that
O(Kγ2), which is the same value found for LORSAL, in
section IV-B.

D. Hyperspectral Image Segmentation (SMLR): Practical Re-
sults

So now, in this section, we will be presenting the conver-
gence curves for both LORSAL (i.e. ADMM) and SMLR FB
(i.e. Forward-Backward for SMLR), all sharing the same
objective function (58).

The results pertain to a Hyperspectral Image Segmentation
problem, for K = 3 classes (labels) of material mixtures, us-
ing USGS 1995 Library.mat data library (from United States
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Geological Survey), which contains the spectral information
about the materials. Number of samples per class (label)
k in the training set is Lk = 100, such that L = 300.
Further, each class is composed of 10 different materials,
with an angle of 10◦ between pairs (spectral components).
In addition, material mixtures for each class (label) were built
using Dirichlet statistical mixtures. Hence defining the spectral
feature vectors. Moreover, label images y obey an MLL prior
P (y) with a second order neighbourhood, while image size
is n = 128× 128.

Algorithms ran until an error of 1% was reached for their
objective function relative error, or a maximum of 200,000
iterations was attained. The optimal value was provided by
LORSAL running 200,000 iterations.

Further, results in this section were obtained using a PC
running a MATLAB 2010a package, with OS Windows 7 (64
bits). The PC has the following specifications: 8 GB of RAM,
Intel Core i7 at 3.4 Ghz.

In relation to algorithm parameters, the initial ADMM
µ used was borrowed from the previous implementation of
LORSAL, i.e. µ = λSMLR/10, [25]. It seems to provide
both good results and convergence, enough for the comparison
in this section. Plus, ADMM’s dynamic µ assignment only
provides marginal gains in terms of convergence in this
example. Further, α was defined with value α = 1.65, since
good convergence results were obtained.

On the other hand, the only parameter up for selection in
SMLR FB is ρ, which is best served with ρ = 1, as will be
revealed ahead.

Meanwhile, λSMLR is defined as λSMLR = 0.001, also
taken from the previous implementation of LORSAL, which
had already been optimized for problem (58) [25]. Both
algorithms, LORSAL and SMLR FB, will be using it.

Moreover, a comparison between the original LORSAL
implementation, which is also ADMM, and the new LORSAL,
which is presented in this document, is revealed in Appendix
D. It can be seen that both are very similar in terms of
convergence towards the same solution, though the implemen-
tation provided in this report is faster - which also implements
the α relaxation step, defined in section II-A, something not
available in the traditional version of LORSAL [25].

1) Comparison between ADMM and Forward-Backward:
In this section we present the convergence curve results for
SMLR FB and LORSAL. The results can be seen in Fig.5; and
the input parameters, for the algorithms, follow those described
in the previous section.

It is obvious that LORSAL solution is far superior in terms
of convergence. Conversely, SMLR FB seems to have a very
low convergence rate, even with optimized parameters.

Although the curve seems static, a closer look reveals that
convergence for SMLR FB is actually happening, but at very
slow rates indeed. Something easily seen in next section’s
results (see Fig.6).

Lastly, more results concerning this scenario are revealed
in Appendix E. In there we can see the image segmenta-
tion results, the original data containing the real material
segmentation, and the noisy spectral measurement to be fed
into the algorithm for segmentation. Further, in the captions
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Fig. 5. Relative error of objective function Φ(.) vs. time, in one entire run
until solution is obtained - convergence curve. For USGS 1995 Library.mat
data and 3 possible classes, λSMLR = 0.001, µ = 0.001/10, α = 1.65,
ρ = 1. Algorithms are run until 1% objective function Φ(.) relative error is
reached. Each algorithm is presented: ADMM (LORSAL), Forward-Backward
(SMLR FB).
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SMLR FB ρ = 1
SMLR FB ρ = 0.3
SMLR FB ρ = 0.5
SMLR FB ρ = 0.75

Fig. 6. Relative error of objective function Φ(.) vs. time, in one entire run
until solution is obtained - convergence curve. For USGS 1995 Library.mat
data and 3 possible classes, λSMLR = 0.001. Algorithms are run until
1% objective function Φ(.) relative error is reached. For Forward-Backward
(SMLR FB) each ρ value is presented: ρ = 1, ρ = 0.75, ρ = 0.5, ρ = 0.3.

of the resulting classification figures, for both LORSAL and
SMLR FB, accuracy values for training and testing data are
provided. As can be seen, very accurate values were achieved.

2) Best choice of ρ for Forward-Backward (FB) in SMLR:
Now, this section presents the results for the best ρ in
SMLR FB, see Fig.6. This is the only parameter that is tunable
for SMLR FB.

Further, it can be seen that the best result in terms of
convergence comes from choosing ρ = 1.

So, just like in Proximal Algorithm I, which uses gradient
∇f1 of Generic Proximal Algorithm (Algorithm 2), results and
experience points to a value of ρ = 1. This can be checked in
Appendix F, which reveals parameter selection results for the
previous problem SR-TV, in (10).

V. CONCLUSION

In this report, our work focused on the implementation of
Proximal Algorithms with focus on applications to inverse
problems in imaging. We studied ill-posed problems, which
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often resort to nonsmooth regularization, and therefore are a
prime case for the use of Proximal Algorithms.

The first application was Super-Resolution Total Variation
Deburring (SR-TV), meanwhile, the second focused on Hy-
perspectral Image Segmentation (SMLR).

Two literature relevant algorithms were presented, Alter-
nating Direction Method of Multipliers (ADMM) and the
Generic Proximal Algorithm by L. Condat. The latter pos-
sesses specific implementations, which are well know, such as
Forward-Backward and Chambolle-Pock. Moreover, ADMM
is a Second-Order method (with curvature information), while
all implementations of Generic Proximal Algorithm are First-
Order methods.

For both algorithms, in all applications, we used optimum
values for the tunable parameters therein. Also, the appropriate
and best implementations of each algorithm were provided,
for each application. These were guaranteed convergence, by
related theorems, and computational cost analysis was also
produced.

In fact, per iteration, ADMM will almost always register
the same or more computational cost, something confirmed
experimentally in SR-TV (check Appendix C). However,
regarding convergence rates, it was proven experimentally
that ADMM tends to have superior performance, in both
applications. Typically, the more ill-posed the problem, the
more advantageous the convergence rate offered by ADMM -
SR-TV results are obvious in this respect, and in the SMLR
problem, it was dominated by ADMM convergence rates.

Further, we conclude that the usage of Second-Order Proxi-
mal Algorithms (e.g. ADMM) is clearly beneficial in terms of
convergence, against First-Order ones, if the problem at hand
allows for their implementation.

By and large, ADMM offers great flexibility, with its
variable splitting process. Further, improvement of ADMM
convergence rates is obtained with over-relaxation (α step),
dynamic µ assignment, and selection of initial µ. In addition,
specific problem structure exploitation boosts performance -
such is the case of function and variable assignment, and
simultaneously matrix factorization (e.g. DFT decomposition).

Generally, the downside of ADMM might be increased
memory usage, due to the expanding nature of auxiliary vari-
ables. Though in most problems this should not be an issue,
usually since processing power seems to be the bottleneck.

Lastly, the Generic Proximal Algorithm, as stated by its
convergence theorems in section II-B, needs to have a bounded
norm of the sum of its linear operators. Conversely, ADMM
does not present this dependency, which is definitely an
advantage.

APPENDIX A
OPERATOR proxσg∗1 (.), FOR CHAMBOLLE-POCK (CP) IN

SR-TV

In here, we demonstrate how to get expression (50) for
proximity operator proxσg∗1 (.), in Chambolle-Pock (CP) im-
plementation for SR-TV, section III-D.

The proximity operator can be introduced according to its

definition

proxσg∗1 (.) = argmin
θ∈R2N

1

2σ
‖.− θ‖2 + g∗1(θ), (87)

where g1(.) was defined in section III-D as

g1(.) = 1/2‖ .− ym‖2. (88)

On the other hand, using the (Fenchel) conjugation property
[7], we can write an alternative expression based on proxg1/σ
as

proxσg∗1 (.) = . − σproxg1/σ
( .
σ

)
, (89)

moreover, proximity operator proxg1/σ ( ./σ) according to the
definition can be written as

proxg1/σ ( ./σ) = argmin
θ∈R2N

σ

2

∥∥∥ .
σ
− θ

∥∥∥2 + g1(θ) (90)

= argmin
θ∈R2N

σ

2

∥∥∥ .
σ
− θ

∥∥∥2 +
1

2
‖θ − ym‖2 , (91)

and now to find the minimum above we take the first-order
derivative, equate to zero vector, and solve for θ

0 = σ
(
θ − .

σ

)
+ (θ − ym) , (92)

after some algebraic manipulation we get

proxg1/σ ( ./σ) = θmin =
1

1 + σ
[ .+ ym] . (93)

Now, replacing the above result (93) into expression (89) we
have

proxσg∗1 (.) = .− σ

1 + σ
[ .+ ym] (94)

=
1

1 + σ
[ .− σym] .� (95)

APPENDIX B
β-LIPSCHITIZ CONSTANT OF SMLR FB

In here, we reveal how to obtain the expression defined
in (86), the β-Lipschitz constant, for gradient ∇f1(.). So,
according to the definition β is defined as

‖∇f1(X)−∇f1(X ′)‖ ≤ β‖X −X ′‖,
∀X,X ′ ∈ Rγ×K , β > 0, (96)

notice that X and X ′ share their dimension with W , the
regressor matrix.

Now, starting with the left term of (96), and using the Taylor
series expansion upon X ′ for function ∇f1, we get∥∥∇f1(X)−∇f1(X ′)

∥∥ =

=

∥∥∥∥∫ 1

0

∇2f1
(
tX + (1− t)X ′

)∗ (
X −X ′

)
dt

∥∥∥∥ , (97)

notice that only one term of the series was used (i.e ∇f1(X ′)),
along with the remainder, which is represented on the right of
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the above equation. Also, ∇2f1 is obviously the first-order
derivative of ∇f1. Further, we can write the following∥∥∥∥∫ 1

0

∇2f1
(
tX + (1− t)X ′

)∗ (
X −X ′

)
dt

∥∥∥∥ ≤ (98)

≤
∫ 1

0

∥∥∥∇2f1
(
tX + (1− t)X ′

)∗ (
X −X ′

)∥∥∥ dt ≤ (99)

≤ ‖X −X ′‖
∫ 1

0

∥∥∇2f1
(
tX + (1− t)X ′

)∥∥ dt ≤ (100)

≤ Lc‖X −X ′‖, (101)

where Lc is just a constant serving as an upper bound for∫ 1

0

∥∥∇2f1
(
tX + (1− t)X ′

)∥∥ dt. In fact, given the structure
of expression (96) we know that Lc = β. So, such upper
bound Lc can be given by

Lc = ‖B‖, (102)

where B is the upper bound function for the second-
order derivative of f1. B has already been introduced, and
can be found in [24], [25], [26]. It is defined by B =
1/2 [Id − 11∗/K] ⊗ XX∗ - where XX∗ = RX is the
covariance matrix. Hence, given the definition of the Euclidean
norm (L2-norm), and defining Ba = 1/2 [Id − 11∗/K], we
can now write the following

‖B‖ = λmax (B∗B) (103)
= λmax ((Ba ⊗RX)(Ba ⊗RX)) (104)
= λmax (BaBa ⊗RXRX) (105)

= λmax
(
UBa‖ΛBa‖2U∗Ba ⊗URX

‖ΛRX
‖2U∗RX

)
(106)

= λmax[(UBa ⊗URX
)(

‖ΛBa‖2 ⊗ ‖ΛRX
‖2
)

(UBa ⊗URX
)
∗
] (107)

= λmax(‖ΛBa‖2 ⊗ ‖ΛRX
‖2), (108)

where we know that Ba and RX are real symmetric matrices,
1 is a column vector of ones with dimension K, ⊗ is
the Kronecker product, λmax(.) is the maximum eigen-value
operator, U and Λ are the matrices of the (orthonormal) eigen-
vectors and eigen-values respectively, and ‖Λ‖2 represents the
square value of the diagonal entries.

Now, it becomes relevant to obtain the structure of ‖ΛBa‖2.
It can be easily shown that matrix 11∗ has rank 1, and its
eigen-values are K (once) and 0 (K − 1 times). Naturally, it
follows that 11∗/K has eigen-values 1 (once) and 0 (K − 1
times). Further, eigen-values for [Id − 11∗/K] are clearly 0
(once) and 1 (K − 1 times). Now, to get the eigen-values of
‖ΛBa‖2 we must first multiply them by 1/2, and then square
them; which gets us the eigen-values 0 (once) and 1/4 (K−1
times). The latter being the maximum eigen-value of ‖ΛBa‖2.

Therefore, it becomes clear that the result for the λmax(.)
operator in (108) is in fact given by

1

4
λmax(‖ΛRX

‖2) =
1

4
λmax(R∗XRX) =

1

4
‖RX‖.�,

(109)
the same expression found in (86) for β, if we assume the
feature space to be represented using a (Gaussian) RBF kernel,
where X , X∗ becomes φ(X), φ(X)∗ respectively.

APPENDIX C
ADDITIONAL RESULTS FOR MAN IMAGE (1024X1024),

KS = 5, Ds = 3

Fig.7, Fig.8, Fig.9, and Fig.10 are figures of this appendix.
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Fig. 7. Duration per iteration execution, in one entire run until solution is
obtained. Early iterations register superior values due to initializations. For
Man image (1024x1024), Ds = 3, KS = 5, λTV = 0.2. Algorithms are run
until 1% objective function Φ(.) relative error is reached. Each algorithm is
presented: ADMM, Proximal Algorithm I (ProxAlg I), Chambolle-Pock (CP).
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Fig. 8. Residues for ADMM, in one entire run until solution is obtained.
Calculated only every 10 iterations to avoid computational burden. µ has the
same update window. For Man image (1024x1024), Ds = 3, KS = 5,
λTV = 0.2. Algorithms are run until 1% objective function Φ(.) relative
error is reached.
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Fig. 9. Dynamic µ assignment variation, in one entire run until solution is
obtained. Updated every 10 iterations to avoid computational burden. For Man
image (1024x1024), Ds = 3, KS = 5, λTV = 0.2. Algorithms are run until
1% objective function Φ(.) relative error is reached.

Noisy, Blurred and Down-Sampled Image

(a) Man (1024x1024) Image;
Ds = 3; KS = 5;
λTV = 0.2. Man Blurred/
Down-Sampled Image.

Deblurred Image, ADMM

(b) Man (1024x1024) Image;
Ds = 3; KS = 5; λTV =
0.2. Man Deblurred Image, by
ADMM.

Deblurred Image, ProxAlg I

(c) Man (1024x1024) Image;
Ds = 3; KS = 5; λTV =
0.2. Man Deblurred Image, by
ProxAlg I.

Deblurred Image, CP

(d) Man (1024x1024) Image;
Ds = 3; KS = 5; λTV =
0.2. Man Deblurred Image, by
CP.

Fig. 10. First image is the blurred and down-sampled image, with (1024/3
x 1024/3) size, and Gaussian Blur of kernel lateral size of 5 pixels. The
others are different deblurred images, for each algorithm. For Man image
(1024x1024), Ds = 3, KS = 5, λTV = 0.2. Algorithms are run until 1%
objective function Φ(.) relative error is reached. Zoom into the figure for
better comparison.

APPENDIX D
COMPARISON BETWEEN NEW AND OLD LORSAL

Fig.11 is the figure of this appendix.
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Fig. 11. Relative error of objective function Φ(.) vs. time, in one entire run
until solution is obtained - convergence curve. For USGS 1995 Library.mat
data and 3 possible classes, λSMLR = 0.001, µ = 0.001/10. Algorithms
are run until 1% objective function Φ(.) relative error is reached. Each
algorithm is presented: ADMM Old Execution (LORSAL), ADMM New
Execution (LORSAL 2). In this case, LORSAL 2 is the implementation
offered in this report, and uses α = 1.65. LORSAL 2 is faster in terms
of convergence, which is also a result of using an α relaxation step - defined
in section II-A.

APPENDIX E
IMAGE SEGMENTATION RESULTS: ORIGINAL, NOISY DATA

AND CLASSIFICATION

Fig.12, Fig.13, Fig.14, and Fig.15 belong to this appendix.
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Fig. 12. Original Data (Labels vs Pixels), without noise. For
USGS 1995 Library.mat data and 3 possible classes.
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Fig. 13. Noisy Data (Labels vs Pixels), testing data. For
USGS 1995 Library.mat data and 3 possible classes.
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LORSAL Classification
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Fig. 14. Segmentation performed (Labels vs Pixels). For
USGS 1995 Library.mat data and 3 possible classes, λSMLR = 0.001,
µ = 0.001/10, α = 1.65. Algorithms are run until 1% objective function
Φ(.) relative error is reached. For ADMM (LORSAL), testing training
accuracy was 0.9967, testing data accuracy was 0.9485.

SMLR_FB Classification
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Fig. 15. Segmentation performed (Labels vs Pixels). For
USGS 1995 Library.mat data and 3 possible classes, λSMLR = 0.001,
ρ = 1. Algorithms are run until 1% objective function Φ(.) relative error is
reached. For Forward-Backward (SMLR FB), testing training accuracy was
0.9999, testing data accuracy was 0.9387.
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APPENDIX F
PARAMETER SELECTION FOR THE SUPER-RESOLUTION TOTAL VARIATION (SR-TV) PROBLEM: ADMM, CP AND

PROXALG I

Here we present algorithm parameter selection for the SR-TV problem.
Values in this section do not necessarily match those in III-F, some due to different conditions, others due to convergence
curve fluctuations, which sometimes marginally affect convergence times. However, generally, the results are roughly the same,
and corroborate the analysis in III-F about the relation between the different algorithms. Moreover, it is easy to see that much
of the parameters are problem specific for each algorithm, and are valid for different deblurring scenarios simultaneously.

A. ADMM: Selection of initial µ (Step Parameter)
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ADMM, µ = 1

ADMM, µ = 10

(a) Cameraman (256x256) Image; Ds = 1; KS = 3. This
particular experiment was run with different conditions of section
III-F: we used λTV = 0.005 and a precision of 1e-4. Though
considerations for parameter selection should remain roughly the
same.
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(b) Elaine (512x512) Image; Ds = 1; KS = 3
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(c) Man (1024x1024) Image; Ds = 3; KS = 3

Fig. 16. Results for initial µ (ADMM step parameter) selection. The best initial µ value is clearly µ = 0.1.
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B. ADMM: Selection of α (Relaxation Parameter)
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(a) Cameraman (256x256) Image; Ds = 1; KS = 3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

10
1

Time (seconds)

R
el
a
ti
v
e
E
rr
o
r

Relative Objective Function Error (Φ(X̂)−Φ(Xopt))/Φ(Xopt)

 

 

ADMM, µ = 0.1, α = 1.5

ADMM, µ = 0.1, α = 1.6

ADMM, µ = 0.1, α = 1.75

(b) Elaine (512x512) Image; Ds = 1; KS = 3

0 0.5 1 1.5 2 2.5 3
10

−3

10
−2

10
−1

10
0

10
1

Time (seconds)

R
el
a
ti
ve

E
rr
o
r

Relative Objective Function Error (Φ(X̂)−Φ(Xopt))/Φ(Xopt)

 

 

ADMM, µ = 0.1, α = 1.5

ADMM, µ = 0.1, α = 1.6

ADMM, µ = 0.1, α = 1.75

(c) Man (1024x1024) Image; Ds = 3; KS = 3

Fig. 17. Results for α (relaxation constant) selection. The values are more or less the same in terms of performance, within the interval recommended in
II-A for α.
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C. ProxAlg I: Selection of σ (Step Parameter)
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Fig. 18. Results for σ (step parameter) selection. The convergence curves clearly indicate that a value near σ = 0.02 is usually the best option.
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D. ProxAlg I: Selection of ρ (Relaxation Parameter)
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ProxAlg I, σ = 0.02 ρ = 0.4
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(a) Cameraman (256x256) Image; Ds = 1; KS = 3
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ProxAlg I, σ = 0.02, ρ = 0.4

ProxAlg I, σ = 0.02, ρ = 0.65
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(b) Elaine (512x512) Image; Ds = 1; KS = 3

0 1 2 3 4 5 6 7 8 9
10

−3

10
−2

10
−1

10
0

Time (seconds)

R
el
a
ti
v
e
E
rr
o
r

Relative Objective Function Error (Φ(X̂)−Φ(Xopt))/Φ(Xopt)

 

 

ProxAlg I, σ = 0.02, ρ = 0.4
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(c) Man (1024x1024) Image; Ds = 3; KS = 3

Fig. 19. Results for ρ (relaxation parameter) selection. The convergence curves clearly indicate that a value near ρ = 1 is the best option, as was stated by
the implementation of Generic Proximal Algorithm into ProxAlg I, in section III-C.
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E. CP: Selection of σ (Step Parameter)
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(a) Cameraman (256x256) Image; Ds = 1; KS = 3

0 1 2 3 4 5 6 7
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

Time (seconds)

R
el
a
ti
v
e
E
rr
o
r

Relative Objective Function Error (Φ(X̂)−Φ(Xopt))/Φ(Xopt)

 

 

CP, σ = 0.0003

CP, σ = 0.003

CP, σ = 0.03

CP, σ = 0.2

CP, σ = 0.3

CP, σ = 3

CP, σ = 30

(b) Elaine (512x512) Image; Ds = 1; KS = 3
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(c) Man (1024x1024) Image; Ds = 3; KS = 3

Fig. 20. Results for σ (step parameter) selection. The best values for σ in the case of Chambolle-Pock (CP) are between σ = 0.2 and σ = 0.3. Further, as
can be seen, there is some harmonic fluctuation in the curves, which affects convergence times, sometimes benefiting σ = 0.2 or σ = 0.3. It is natural to
have this harmonic fluctuation, since the is no guarantee of monotonicity in the convergence, according to II-B.
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F. CP: Selection of ρ (Relaxation Parameter)
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(a) Cameraman (256x256) Image; Ds = 1; KS = 3
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(b) Elaine (512x512) Image; Ds = 1; KS = 3
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(c) Man (1024x1024) Image; Ds = 3; KS = 3

Fig. 21. Results for ρ (relaxation parameter) selection. The best value for ρ in the case of Chambolle-Pock (CP) is usually a value near ρ = 2, as can be seen
above, and as recommended in the theoretical introduction, in section II-B. Once more we register some harmonic fluctuation, which sometimes marginally
affects the results.


