

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Data Cleaning with Variational

Autoencoders

Simão Fernandes Lopes Marques Eduardo

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

The University of Edinburgh

2022

Abstract
A typical data science or machine learning pipeline starts with data exploration;

then data engineering (wrangling, cleaning); then moves towards modelling (model

selection, learning, validation); and finally model visualization or deployment.

Most of the datasets used in industry are either structured or text based. Two

relevant instances of structured datasets are: graph data (e.g. knowledge graphs),

and tabular data (e.g. excel sheets, databases). However, image datasets are

increasingly used in industry and have similar pipeline steps.

This thesis explores the data cleaning problem, where two of its main steps are

outlier detection and subsequent data repair. This work focuses on outliers that

result from corruption processes that are applied to a subset of instances belonging

to an original clean dataset. The remaining instances unaffected by corruption, or

before corruption, are called inliers. The outlier detection step finds which data

instances have been corrupted. The repair step either replaces the entire instance

with a clean version, or imputes the values of specific features in that instance

that are deemed corrupted. In both cases, an ideal repair process restores the

underlying inlier instance, before having been corrupted by errors.

The main goal is to devise machine learning (ML) models that automate both

outlier detection and data repair, with minimal supervision by the end-user.

In particular, we focus on solutions based on variational autoencoders (VAEs),

because these are flexible generative models capable of providing repairs as samples

or reconstructions. Moreover, the reconstruction provided by VAEs also allow

for the detection of corrupted feature values, unlike classic outlier detection

methods. Since the training dataset is corrupted by outliers, the key aspect to

good performance in detection and repair is model robustness to data corruption,

which prevents overfitting to errors. If the model overfits to errors, then it is

difficult to distinguish inliers from outliers, therefore degrading performance. In

this thesis two novel generative models are proposed for this task, to be used in

different contexts.

The two most common types of errors are either of random or systematic nature.

Random errors corrupt each instance independently using an unknown distribution,

exhibiting no clear anomalous pattern across outlier instances. Systematic errors

result from nearly deterministic transformations that occur repeatedly in the

i

data, exhibiting a clear pattern across outliers. Overall, this means high capacity

models like VAEs more easily overfit to systematic errors, which compromises

outlier detection and repair performance. This thesis focuses on point outliers

as they are the most commonly found by practitioners. Point outliers are those

that can be identified by only evaluating said instance individually, without the

context of other instances (e.g. space, time, graphs).

The first model proposal devises a novel unsupervised VAE that is robust to

random errors for mixed-type (e.g. categorical, continuous) tabular data. This

first model is called the Robust Variational Autoencoder (RVAE). We introduce this

robustness by designing a decoder architecture that downweighs the contribution

of corrupted feature values (cells) during training. Unlike traditional methods,

besides providing which instances are outliers, the novel model provides which cells

have been corrupted improving model interpretability. It is shown experimentally

that the novel model performs better than baselines in cell outlier detection and

repair, and is robust against initial hyper-parameter selection.

In the second model proposal the focus is on detection and repair in datasets

corrupted by systematic errors. This second model is called the Clean Subspace

Variational Autoencoder (CLSVAE). The nature of systematic errors makes them

easy to learn, and thus easy to overfit to. This means that if they are numerous in

a dataset, then unsupervised methods will have difficulty distinguishing between

inliers and outliers. A novel semi-supervised VAE is proposed that only requires

a small labelled set of inliers and outliers, thus minimizing end-user intervention.

The main idea is to learn separate latent representations for inliers and systematic

errors, and only use the inlier representation for data repair. The novel model is

shown to be robust to systematic errors, and it registers state-of-the-art repair

in image datasets. Compared to the baselines, the novel model does better in

challenging scenarios, where corruption level is higher or the labelled set is very

small.

ii

Lay summary
Data science and machine learning practitioners leverage data from companies and

universities to build useful models that can make predictions. These predictions

can then be used for the benefit of analytics, decision making, smart consumer

electronics, banking, online advertisements and even social networks feeds. These

models build upon years of knowledge in the fields of statistics, algebra, calculus

and other fields of mathematics. However, often these practitioners deal with data

that is of poor quality.

The data can be messy in its format and not conform well to the software used to

develop and deploy such models. These issues have to be resolved so that the data

can be used by the modelling software; but also so that the data can be stored in

existing databases for later. Moreover, the data may also have been corrupted

with data examples that do not reflect what the actual untainted data would be

like. Those corrupting data examples are called outliers; whilst inliers are those

that are normal and do not have that effect. These outliers can have a negative

impact on the prediction power of the aforementioned models, which can lead to

poor analytics and decision making. In practice data corruption issues may also

need to be resolved before data storage.

In this work we focus on outliers that were caused by previous inliers having

been compromised by corrupting errors. These errors have diverse origins, e.g.

typos, mislabelling of categories, noise in scientific instruments, unwanted image

watermarks, camera sensors being broken, human error in data entry. As a result,

for this type of outliers it is often possible to revert back and restore the underlying

inlier. This task is called data repair.

The process of resolving either data format messiness or data corruption is called

data cleaning. In this thesis we focus on resolving the data corruption issue, which

entails detecting the outliers and then repairing them. Generally this has been

done manually by the practitioner, often with substantial effort. In the real world,

it is common for data scientists to spend much more of their time in data cleaning

tasks compared to model development.

In this thesis we propose two novel models that can automate the process of

data cleaning for the data corruption issue, i.e. outlier detection and subsequent

data repair. By using these proposed models the burden on the practitioner is

iii

lessened with automation, and only a monitoring effort is needed. The family of

models that were chosen for this task are deep generative models. The reason was

that these are very powerful at generating new data examples that can be used

as repairs. These models use a deep learning approach, which is a set of math

building blocks for modelling. In the last few years deep learning has been the

dominating paradigm in machine learning, producing outstanding predictions and

results.

The first model proposal is more hands off, i.e. unsupervised. It only requires

the user to set a few initial values to define model behavior in terms of data

cleaning. This model is great for unexpected errors that do not repeat constantly

throughout the data. The second model requires more effort by the practitioner,

but also allows more control over the data cleaning process. The user is required

to provide a few data examples of what types of outliers it wants to repair, i.e.

semi-supervised. This model is great for errors that affect large parts of the data

and repeat constantly throughout. These types of errors produce outliers that

tend to be more difficult to remove with solutions like the first model proposal.

iv

Acknowledgements
I would like to thank my supervisor Dr. Charles Sutton, who was fundamental in

all of this work. His patience and willingness to support me was pivotal, and my

discussions with him were always very insightful. I would also like to thank Dr.

Chris Williams, my second supervisor, who helped me quite a bit by providing

different perspectives with a keen eye for detail. Dr. Alfredo Nazabal and Dr.

Kai Xu were my co-authors and research partners, I’ve learnt a lot from them.

Both were always supportive, keen to help me and with many good suggestions. I

would also like to thank my family, my parents and especially my younger brother

Afonso. They were always there with great advice, and were my bedrock when

I was going through difficult times. Finally, I would like to thank everyone I’ve

met at the University of Edinburgh, especially my colleagues at the CUP research

group. I would also like to thank my friends and colleagues at the Center for

Doctoral Training in Data Science for all the great memories.

This work was supported in part by the EPSRC Centre for Doctoral Training

in Data Science, funded by the UK Engineering and Physical Sciences Research

Council (grant EP/L016427/1) and the University of Edinburgh.

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except

as specified.

(Simão Fernandes Lopes Marques Eduardo)

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Setting . 4

1.3 Solving the Problem . 6

1.3.1 Why Variational Autoencoders? 8

1.3.2 Thesis Contributions . 8

2 Background 12

2.1 Problem Setting: Notation and Definitions 12

2.2 Outlier Detection Task . 13

2.2.1 Types of Outliers in Data 17

2.2.2 Problem Definition for Outlier Detection 21

2.2.3 Classic Methods: Machine Learning and Data Mining . . . 22

2.2.4 Database Systems Methods 29

2.2.5 Deep Learning Methods 32

2.3 Data Repair Task . 34

2.3.1 Problem Definition for Data Repair 34

2.3.2 Database Systems Methods 36

2.3.3 Statistical and Machine Learning Methods 37

2.4 Deep Generative Models . 41

2.4.1 Deep Generative Models for Mixed-Type Tabular Data . . 48

2.5 Deep Generative Modelling with Variational Autoencoders 49

2.5.1 Standard Variational Autoencoders (VAEs) 50

2.5.2 Unsupervised AEs: Regularization or Data Reweighting . . 55

2.5.3 Supervised and Semi-supervised VAEs 63

2.5.4 Latent Space Disentanglement in VAEs 71

vii

3 Robust VAEs for Outlier Detection and Repair of Mixed-Type

Data 79

3.1 Motivation: How does it fit into the thesis? 79

3.2 Introduction . 80

3.3 Related Work . 81

3.4 Problem Setting . 83

3.5 Proposal: Robust Variational Autoencoder (RVAE) 83

3.5.1 Outlier Model . 85

3.5.2 Inference . 87

3.5.3 Anomaly Scores for Outlier Detection 89

3.5.4 Repair Process for Dirty Cells 90

3.6 Experiments . 90

3.6.1 Corruption Process . 91

3.6.2 Evaluation Metrics . 92

3.6.3 Competing Methods . 93

3.6.4 Hyperparameter Selection for Competing Methods 95

3.6.5 Outlier Detection Results 96

3.6.6 Data Repair Results . 98

3.6.7 Robustness to Noising Processes 98

3.6.8 Robustness to Hyperparameter Values 100

3.7 Additional Notes . 100

3.7.1 Dataset details . 101

3.7.2 Derivation of Coordinate Step for Weights 101

3.7.3 Additional details for RVAE and Competing Methods . . . 102

3.8 Additional Results . 106

3.8.1 Outlier detection additional details 106

3.8.2 Repair additional details 110

3.8.3 RVAE-CVI vs RVAE-AVI 110

3.8.4 Different noise processes additional details 112

3.8.5 Error Bars per Noise Level 114

3.8.6 Different Outlier Detection Task: RVAE vs ABDA 115

3.8.7 Different Inference Method 116

3.9 Concluding Remarks . 119

3.9.1 Advantages and Disadvantages 120

3.9.2 Comparing to a Recent Model: Picket 123

viii

4 Repairing Systematic Outliers via Clean Subspace VAEs 125

4.1 Motivation: How does it fit into the thesis? 125

4.2 Introduction . 126

4.3 Related Work . 128

4.4 Problem Definition . 131

4.5 Proposal: Clean Subspace VAE (CLSVAE) 132

4.5.1 Generative Model . 133

4.5.2 Variational Model . 135

4.5.3 Training Loss . 136

4.5.4 Distance Correlation Penalty 138

4.5.5 Outlier Detection and Repair Process 140

4.6 Experiments . 141

4.6.1 Evaluation . 142

4.6.2 Datasets and Corruption Process 142

4.6.3 Comparative Models . 145

4.6.4 Discussion of Results . 153

4.6.5 Additional Results . 157

4.7 Concluding Remarks . 173

4.7.1 Advantages and Disadvantages 174

4.7.2 Potential Real-World Applications 178

5 Conclusion and Future Work 179

5.1 Using RVAE and CLSVAE in Practice 180

5.2 Data Benchmarks and Frameworks 183

5.3 Going Forward on Robust Generative Models 184

5.4 An Outlook of the Problem in 2022 186

Bibliography 191

ix

Chapter 1

Introduction

1.1 Motivation

In the real world, machine learning (ML) and data science practitioners often

have to deal with corrupt or messy datasets when developing or deploying models.

Moreover, it is common for datasets that have been designated for storage or

merging with existing databases to have corruption issues. Besides data corruption

other issues affecting datasets might be: units of measure issues, row or column

header name issues, file format issues, instance duplication, data is split across

several files, imputing known missing entries, removing irrelevant features or data,

or even feature transformation.

In general, the machine learning pipeline (Hapke & Nelson, 2020; Xin et al., 2021;

Ilyas & Rekatsinas, 2020; Orr et al., 2021) can be described as having several

different stages:

• Data Exploration is where data is explored using visualization tools, like

OpenRefine or Trifacta, and other exploratory data analysis methods (e.g.

Q-Q plots, boxplots, scatter plots, histograms, dimensionality reduction). It

allows the practitioner to detect any problematic issues in the data, make

some early choices about potential models to develop, and even label part

of the data if needed.

• Data Engineering is where data is modified and transformed in order to

conform with subsequent stages, in particular for model training. This is

also where any issues with the data are sorted. We can define two types of

1

Chapter 1. Introduction 2

data modification steps:

1. Data Wrangling this can be seen as the process of translating or

mapping data from one raw format to another, and preparing the data

to be accessed for model development or for later stages. This can

include feature transformation, merging of different data files, and even

data loading scripts for compute clusters.

2. Data Cleaning this is the process of detecting and addressing data

quality issues and inconsistencies. Some typical issues include: data

de-duplication, data imputation, fixing units of measure issues, outlier

detection and subsequent data repair if needed. These issues may

need to be fixed so as to not affect model training, and subsequent

deployment on real world data.

• Model Development is where the practitioner chooses between different

types of models, and tries a range of different hyperparameter values for

each model. This can be seen as trial-and-error process, or a continuous

improvement of modelling assumptions by the practitioner. Broadly, it

encompasses the following steps: model selection, model training, and model

validation.

• Model Visualization is where test set predictions by the chosen model

are visualized, and additional metrics are taken into account. Here a final

decision about the model is made. Otherwise, another round of model

development might take place.

• Model Deployment is where the model is finally deployed into a produc-

tion environment. Scalability issues become a concern, and the model is

continuously monitored to make sure performance is acceptable.

We will be focusing on the data cleaning step of the data engineering stage. Our

focus is on the cleaning of datasets that have been corrupted by outliers, and thus

have to be repaired before being usable. These outlier instances have a diverse

provenance, and they can be of different types (Section 2.2.1). In this work we

will tackle outliers that result from a data instance having its feature values

altered (errors) by some corruption process. There are other causes for outliers

besides corruption, even so corruption-based outliers are quite common in practice.

Hence, they have recently become relevant for both the ML and database research

Chapter 1. Introduction 3

communities (Krishnan et al., 2016; Chu et al., 2016; Ruff et al., 2021; Liu et al.,

2020; Hendrycks & Dietterich, 2019). Furthermore, we focus on point outliers as

they are the most common in practice (Section 2.2.1). Point outliers are those

that can be identified by themselves, without the context of other instances.

This thesis will focus on the task of automating the data cleaning step, particularly

for outlier detection and the subsequent data repair. To that effect, we will propose

novel solutions based on machine learning. Few models in literature provide an

end-to-end solution, i.e. combining outlier detection and data repair, which is

one of the main aspects of this work. In fact, most models focus on either outlier

detection or data repair. However, this ignores the fact that a practitioner often

wants to repair the corrupt dataset after outlier detection has taken place.

Data repair is often necessary when there is a need to store new data into existing

databases. This can be critical data than needs to be kept, or because it will be

used later on for downstream tasks. For instance, banking transactions, client or

product data in a company database, or even citizen health records. This has

been one of the focuses of the database research community (Fan, 2015), where

data repair procedures are used to maintain data quality in existing databases.

In some cases it can make sense to just remove or ignore the outliers without

the burden of data repair. In fact, this is the only option if the outliers are not

due to having some of their features corrupted. In this case there is no repair

possible. Further, in some cases the fraction of outliers in the data is so small

that removing them will have little impact on the training of an ML model. In

fact, ignoring outliers has been explored for adversarial outliers and systematic

outliers (see Section 2.3.3.4), this has been called data sanitization.

Nonetheless, in several cases the amount of corruption present in a dataset can be

substantial. Thus ignoring the outliers would result in large parts of the dataset

not being used, which will impact negatively the diversity of data available to

train an ML model. This could also mean that more powerful ML models that

require significant amounts of data cannot be trained properly, e.g. deep learning.

In addition, some authors (Krishnan et al., 2016; Liu et al., 2021) have shown

that data repair can have a positive impact on the performance of ML models in

downstream applications. However, in other cases the outlier instance is just too

corrupted and does not have a recognizable repair. In this case, it is impossible to

Chapter 1. Introduction 4

produce a repair.

If the purpose of a data repair process is a downstream task, then it should be

assessed first if outlier removal suffices. Sometimes direct removal of outliers

results in little to no negative impact on the downstream task. If this is the case,

then effort can be spared trying to repair the data. The typical example is when

very large datasets are available, such that removing a small portion of the data

has little impact on ML model generalization.

Even so, in several cases data repair may yield better results for downstream tasks.

For instance, if in the presence of imbalanced datasets, sometimes outlier removal

may affect disproportionately a particular minority data class. In this case, it

is possible downstream model generalization may be affected and give rise to

unwanted biases. Additionally, in those cases where the dataset is already small,

then outlier removal may seriously impair training and lead to poor downstream

model generalization. Another case is when different future downstream tasks

may be expected to use the same cleansed dataset. Here one may not be able to

measure the impact right away of outlier removal, as different ML models may

present different sensitivities to that process. Further, as stated before, cases

where corruption affects most of the data would lead to a very small training

dataset for the downstream model. Hence possibly negatively affecting model

generalization.

Lastly, at test time some ML models may also need to repair data instances

before making a prediction. Indeed, sometimes corruption can mangle the data

instances to a point where data repair is needed for the predictor to be able

to recognize it. It can lead to low confidence predictions, and sometimes to

completely wrong predictions with high confidence. This sensitivity is often both

model and corruption dependent, and would need analysis before a decision could

be made on using data repair. Alternatively, a downstream predictor may rather

have a rejection option, where a prediction on some test data instance is not made

if its below a certain confidence level.

1.2 Problem Setting

We assume a tabular or image dataset has been corrupted by noise, and a machine

learning practitioner (or user) needs to cleanse the dataset. The cells of a tabular

Chapter 1. Introduction 5

dataset, or pixels of an image dataset, are potentially corrupted with arbitrary

noising processes appropriate for each feature type. Note that the instances in

tabular dataset are rows, whilst for image datasets they are images. The first

objective in this work is the detection of anomalous instances that have been

corrupted, i.e. outliers or row outliers for tabular data. This task is known as

outlier detection or anomaly detection. Then, in some cases, we also want to

detect which cells (or pixels) have been specifically corrupted by errors. This has

the advantage of allowing the user to know why that instance is an outlier, thus

improving the interpretability of the outlier detection process. We call this cell

outlier detection. Moreover, we make the assumption that most of the instances

are inliers, as this conforms to most cases in practice (Ruff et al., 2021; Chandola

et al., 2009). In this thesis we only explore point outliers (see Section 2.2.1),

which means an instance can be considered an inlier or outlier by itself. In other

words, there is no need to inspect other data instances within some context (e.g.

space proximity, time-series, connections in a graph). Point outliers are the most

common type of outlier in literature and in practice. In fact, most traditional

outlier detection methods focus on this type of outlier.

The second objective in this work is to repair the corrupted cells (or pixels) in

each outlier instance, such that the end result is a clean dataset unaffected by

corruption. This is called data repair. This is done by either generating new

values for the corrupt cells only, or reconstructing the instance altogether (i.e. all

cells). Either option is valid depending on the context, but repairing the corrupt

cells only tends to be the most applicable. This is akin to data imputation, but in

our case the model for this task is trained on a corrupted dataset. So these new

cell values need to be close enough to the underlying ground-truth for data repair

to be good, as measured by some metric or evaluated qualitatively. Furthermore,

one might need to estimate which cells have been corrupted by errors before we

can repair them. Interestingly, this is the task of cell outlier detection. Though in

some rare cases the corrupt cells mask may already be known.

Having said that, the overall goal of this thesis is to devise models that perform

outlier detection (OD) and data repair, with little or no user intervention. Often,

we will refer to this as automatic detection and repair. Moreover, sometimes repair

needs substantial user intervention, if little to none is used we refer to this as

automated repair. Generally, some intervention may still be needed in the model,

Chapter 1. Introduction 6

for such things as hyper-parameter selection (e.g. learning rates, neural network

architectures) or even setting a threshold for outlier detection (user may want

to control this aspect directly). In some cases, it may be useful to use a small

labelled subset of the data to supervise the model. In this case, user intervention

may also be needed to build this labelled set if not obtained otherwise. Obtaining

a labelled set can be done during the data exploration stage of the ML pipeline.

In this work, we explore two types of corruption that are quite relevant in practice,

which are random errors and systematic errors (see Section 2.2.1). Random

errors affect an instance by corrupting the cells independently, and using an

unknown distribution. For continuous features, a common example of this type

of error are those well-modelled by additive noise with zero-mean. Systematic

errors result from a nearly deterministic corruption of the cells, which has been

applied repeatedly throughout the data instances. Examples include watermarks

or deterministic pixel corruption (e.g. artifacts) in images; additive offsets or

replacement by default values (e.g. NaN) in sensor data and tabular data.

Consequently, random errors and systematic errors have different impacts on

machine learning models, and thus may require different data cleaning solutions.

Machine learning models can overfit to either of these errors if they are not made

robust to them. If a model overfits to corruption then its ability to perform outlier

detection or data repair becomes compromised. This is because it may not be able

to distinguish between inliers and outliers. Systematic errors are quite problematic

in this sense, because unlike random errors they are far more easily learnt by a

model.

1.3 Solving the Problem

Classic models for outlier detection only focus on finding outlier instances, often

forgetting to identify which cells are to blame. The latter is not only important

in terms of interpretability, but also since detecting outlier cells may be needed

for data repair. These classic outlier detection models have been mostly proposed

by the statistics, ML and data mining communities (Section 2.2.3). These models

tend to be shallow, i.e. lack of modelling capacity, and thus have difficulty

modelling complex data distributions. This is the case for a lot of unstructured

data like image or text data; but also in the case of tabular data where nonlinear

Chapter 1. Introduction 7

dependencies between features are not properly modelled by shallow methods. In

general, these models also have scalability issues when applied to large datasets,

though some have specific versions to tackle this. Furthermore, little thought

is given to the subsequent step of data repair by most ML methods that are

proposed for outlier detection.

The database research community has also proposed several methods for data

cleaning (Sections 2.2.4 and 2.3.2), and some are capable of both outlier detection

and data repair. However, these typically rely on the use of either logic rules or

user-defined programs (e.g. scripts) to define data quality constraints. These can

either describe what constitutes a clean dataset, or the actual errors corrupting the

data. One issue with this type of solution is that it requires substantial effort on

the part of the practitioner, since this data quality knowledge need to be codified

into logic rules or programs. This can be very time consuming, and it requires

the practitioner to be skilled in the type of logic used (e.g. first-order logic) or

a programming language. Alternatively, these logic rules can be distilled from a

master dataset that is clean by using rule mining software. But in most cases

in the real world a clean or master dataset is not available to the practitioner.

Another issue is one of scalability, since in practice it is quite difficult to fully

describe the clean patterns of a large dataset by just using logic rules.

Data imputation (Section 2.3.3) models proposed in statistics and machine learning

research also have difficulty being applied here. These models rely on some other

method having been trained to perform cell outlier detection, as they need the

mask of cells to be imputed. The outlier detection method would have to be

trained on corrupt data, and it is possible some corrupted cells would be missed.

This could endanger the training of the data imputation model later on if the

same data were to be used, as these models are not robust to corruption. Further,

even if all corrupt cells are identified, not a lot of clean data instances may be

left for proper training of the data imputation model. In addition, a lot of data

imputation models assume large amounts of clean data are available for training.

Similar arguments can be made about image inpainting models (Section 2.3.3.2),

which suffer from similar issues.

Chapter 1. Introduction 8

1.3.1 Why Variational Autoencoders?

A potential solution for our task should be an ML model that is flexible enough

to fit complex data distributions; and be applicable to different types of data, e.g.

image data or tabular data. In fact, tabular datasets often encompass features with

different data types, e.g. continuous and categorical, which is often referred to as

mixed-type data. This is an important requirement since we aim to provide good

fidelity in terms of data repair estimates. Deep learning models fit this requirement

as they have shown their potential as very powerful function approximators in

the last few years. Moreover, recently deep learning has started to gain traction

for outlier detection (Ruff et al., 2021).

Given our task of combined outlier detection and data repair, deep generative

models seem to be quite appropriate as a solution. Broadly, a generative model is

an ML model that is trained to fit a data distribution. Deep generative models

use neural networks as function approximators, and thus they are extremely

flexible. They were chosen for their ability to reconstruct and sample data, which

is necessary for data repair. However, because of their high capacity they can

easily overfit to corrupting errors. Hence, it is very important to make sure that

our deep generative model is robust to the type of corruption found in the data.

In this thesis we focused on Variational Autoencoders (VAEs). These were pre-

ferred for their simplicity in terms of implementation, and stable training regimes.

Other models like Generative Adversarial Networks (GANs) are more complicated

in terms of implementation, and often have very unstable training regimes. Hence,

VAEs were chosen as a first incursion into robust deep generative models for

the task of automating outlier detection and repair. Moreover, since VAEs are

reconstruction-based models (Section 2.2.3.6) they allow for the granularity of cell

outlier detection.

1.3.2 Thesis Contributions

Having decided on the type of model for our task of automated data cleaning,

this thesis introduces two novel VAEs that are robust to data corruption. The

first model proposal focuses on data cleaning for random errors. The second

proposal focus on systematic errors. All models explored in this thesis apply to

point outliers, as defined in Section 2.2.1.

Chapter 1. Introduction 9

In more detail, the contributions of this thesis are the following:

• In Chapter 3, the novel Robust Variational Autoencoder (RVAE) is

proposed. This unsupervised VAE model is designed to perform combined

outlier detection and data repair in the presence of random error corruption.

One of the novelties is the exploration of the cell outlier detection task,

which can be important for subsequent data repair or for interpretability.

When the model was first published, to our knowledge it was the only

robust deep VAE model for mixed-type tabular data. This deep generative

model learns a distribution of the underlying inlier data, whilst isolating the

outlier cells, and thus downweighting their contribution to the training loss.

RVAE learns the probability of each cell being an outlier, which allows the

balancing of different likelihood models (e.g. categorical and continuous)

in the instance anomaly score. This makes RVAE much more suitable

for outlier detection in mixed-type data. RVAE outperformed or matched

competitor model performance in outlier detection (cell and row) and in

data repair. Experiments were carried out using several tabular datasets

from UCI ML database, with different corruption levels and error types.

The model was also shown to be robust against initial value choices for its

main hyperparameter α, for moderate corruption amounts.

• In Chapter 4, the novel Clean Subspace Variational Autoencoder

(CLSVAE) is proposed. This semi-supervised VAE is designed to perform

data cleaning in the presence of systematic error corruption. Systematic

errors result from nearly deterministic transformations (plus potentially some

noise) that occur repeatedly in the data, e.g. specific image pixels being set

to default values or watermarks. Consequently, models with enough capacity

easily overfit to these errors, making outlier detection and repair difficult.

Since it is difficult to isolate these types of outliers using unsupervised

models, we propose using user interaction in the form of semi-supervision.

In order to make it easier to the user, we limit supervision to only a few

labelled examples, particularly the type of outliers (systematic errors) the

user wishes to repair. This is far more practical than using logic rules

or programs, since these require expert knowledge and much more effort

by the user. Seeing as a systematic outlier is a combination of patterns

of a clean instance with patterns of a systematic error, the main insight

Chapter 1. Introduction 10

is that inliers can be modelled by a smaller representation (subspace) in

a model compared to outliers. So, the main idea behind CLSVAE is to

partition the latent space and model inlier and outlier patterns separately.

Experiments provided use three image datasets in scenarios with different

levels of corruption and labelled set sizes. CLSVAE is effective with much

less labelled data compared to previous related models (two of them state-of-

the-art VAEs), often with less than 2% of the data. In fact, for data repair

with just 0.25% of labelled data CLSVAE registers a relative error decrease

of 58% compared to the closest baseline.

Work Disclosure

Here we disclose the work split between authors for each content chapter.

• Disclosure for Chapter 3 (RVAE). This chapter is based on the paper Robust

Variational Autoencoders for Outlier Detection and Repair of Mixed-Type

Data published in AISTATS 2020 (Eduardo et al., 2020). This is joint work

with Dr. Alfredo Nazabal, Dr. Christopher K. I. Williams and Dr. Charles

Sutton, where I was first author. My contribution to this work was the

generative model; part of the inference scheme (RVAE-CVI); outlier detection

and repair procedures; vast majority of coding for RVAE and baselines; code

for most of the experiments; writing significant part of the paper. Dr

Alfredo Nazabal partly developed the inference scheme (RVAE-CVI); code

for experiments on standard OC-SVM and ABDA models; general code

review; helped in repair metrics coding; helped in writing the paper; and

steadfast supervision. Dr. Christopher Williams and Dr. Charles Sutton

provided much needed supervision, and guidance in all things.

• Disclosure for Chapter 4 (CLSVAE). This chapter is based on a pre-print

called Repairing Systematic Outliers by Learning Clean Subspaces in VAEs,

and is available online on OpenReview1 and arXiv2. This is joint work with

Dr. Kai Xu, Dr. Alfredo Nazabal, and Dr. Charles Sutton, where I was

first author. The co-authors provided helpful guidance and supervision, and

helped write the pre-print. My contribution was proposing the generative

model, though helpful suggestions were made by co-authors; the inference

1https://openreview.net/forum?id=kHNKTO2sYH
2https://arxiv.org/abs/2207.08050

https://openreview.net/forum?id=kHNKTO2sYH
https://arxiv.org/abs/2207.08050

Chapter 1. Introduction 11

procedure; coding for CLSVAE and all baselines; all the experiments; writing

most of the pre-print.

Chapter 2

Background

2.1 Problem Setting: Notation and Definitions

Consider a tabular or image dataset X that has been corrupted by noise. This

dataset, or most of it, will be used as a training set for a model that performs both

outlier detection (OD) and data repair. The instances in this corrupted dataset

X are numbered using n ∈ {1, · · · , N}, and we can define it as X = {xn}Nn=1.

Further, each instance xn is comprised of several features (or pixel positions)

numbered using d ∈ {1, · · · , D}. Each cell (or pixel) xnd in the dataset can be

continuous (real) xnd ∈ R, or categorical xnd ∈ {1, .., Cd} with Cd the number

of unique categories of feature d. Usually, in an image dataset all the features

will have the same feature type, i.e. all continuous or all categorical. If no more

information is given, e.g. labelled data, then this is called an unsupervised setting.

In some cases we might have access to a small labelled set, i.e. a trusted set,

which is a subset of the overall dataset X . In essence, we have the labelled part

of the data Xl, and the unlabelled part Xu. We can write the overall dataset as

X = Xu ∪ Xl, where we have Xu = {xn}Nun=1 and Xl = {xn}Nl+Nun=1+Nu
. Hence, the

overall size of the dataset is N = Nl +Nu. In this case, each xn ∈ Xl is associated

with a label yn ∈ {0, 1}, which indicates whether xn is an inlier (yn = 1) or an

outlier (yn = 0). We define the set of labels as Yl = {yn}Nl+Nun=1+Nu
and thus the

trusted set is formally defined by (Xl,Yl). This scenario is called a semi-supervised

setting.

Often we leave out the subscript n to simplify notation, for example, an instance

12

Chapter 2. Background 13

in the dataset (e.g. a row, or an image) may be represented as: x is xn; or z is

zn; or y is yn. Further, a cell (or pixel) of an instance can also be represented

as: xnd is xd. As such, we can define an instance as a vector with D features as

follows: xn = [xn1 . . . xnd . . . xnD] is x = [x1 . . . xd . . . xD].

Our problem assumes that corruption is due to errors that change the ground-

truth values of cells (or pixels). These errors may originate from several different

processes, and they may be either random or systematic in nature (see Section

2.2.1). Those instances that have been affected by corruption in its cells (or pixels)

are called outliers; whilst those left unchanged are called inliers. Typically, a

corrupted dataset tends to have more inliers than outliers, but the amount of

outlier instances can range from small to large. Note that these type of outliers

fall within the scope of point outliers (see Section 2.2.1), which is the main focus

of this thesis.

We can model an arbitrary corruption process through a general transformation fcr,

which represents the corruption applied to the cells of a clean instance. Assuming

the clean ground-truth of an instance is x̃ ∈ X̃ , then x ∈ X is defined by: if

an inlier (y = 1) then x = x̃; otherwise, if an outlier (y = 0) then x = fcr (x̃).

Further, in case of an outlier then fcr will only change a subset of cells, such that

for some feature d: for clean cells we have xd = x̃d; and for dirty cells we have

xd = [fcr(x̃)]d. Note that [·]d is just to make it clear we mean the dth element

of the resulting vector, i.e. select the dth cell. Lastly, we will often call a dataset

with only inlier instances an inlier dataset, or clean dataset. Likewise, we call a

dataset that has been corrupted with outliers a corrupt dataset, or dirty dataset.

2.2 Outlier Detection Task

In this section, we discuss the outlier detection task in more detail. We define it

formally and review prior literature on the topic.

Traditional outlier detection (OD), also called anomaly detection, focuses on

finding which data instances from a test set do not belong to normal data. In this

context, normal data is just all the patterns that are expressed by inliers. Outliers

are those that do not fit within the diversity seen in normal data. As seen in

Hawkins (1980), an outlier is an observation that deviates so much from the other

observations as to arouse suspicion that a different mechanism generated it. As

Chapter 2. Background 14

such, this assumes normal data is generated by a process (mechanism) different

from that which generated the outlier. In practice, sometimes user intervention is

needed to help identify the normal data. Note that normal data and clean data

are the same thing, though in traditional outlier detection the term normal data is

more popular. In our problem notation inliers are assumed to be the majority in

the data, which is a common assumption amongst classic OD methods (Emmott

et al., 2015). Indeed, several OD methods tend to assume outliers are those

exhibiting rare patterns (Chandola et al., 2009; Ruff et al., 2021). Yet, sometimes

outliers are numerous and this assumption does not hold. In this case, methods

should be tailored to the type of outliers seen, or use some kind supervision to

overcome this.

More generally, in the recent survey Ruff et al. (2021) the authors specify that an

outlier is an observation that deviates considerably from some concept of normality.

This concept of normality can be expressed by some distribution p+(x) where

x ∈ X such that it absolutely models the ground-truth law of normal behavior.

This law of normal behavior is inherently subjective and specific to each application

or context. For instance, the biases of a practitioner or a downstream task can

constrain what is normal. Therefore, according to Ruff et al. (2021), an outlier is

a data instance x ∈ X that lies in a low probability region under p+(x). In other

words, we can say that an outlier is an instance that is sampled from a generative

process that is not considered normal.

The fact that a particular instance is rare or unusual does not make it automatically

an outlier, as it can still abide the law of normal behavior. For instance, in a data

exploration setting the practitioner is responsible for defining what is normal. In

this case an instance can be flagged as unusual, but the practitioner can still decide

it to be normal. Indeed, the variability within normal data (inliers) can be quite

large in some applications (e.g. biometric data, image data), and the deviation to

other normal instances larger than to some outlier instances. Besides, in image

data a corruption process (e.g. compression artifacts) can be quite frequent, and

still not abide to the law of normal behavior. In this case all instances affected by

corruption should be flagged as outliers despite being frequent. Alternatively, in

the context of out-of-distribution outliers (see Section 2.2.1), it is assumed only

the diversity seen during training abides to the law of normal behavior. Thus no

assumption on rarity makes sense in this context. Another inductive bias that

Chapter 2. Background 15

can decide whether an instance might be an outlier is the impact that instance

may have on the performance of a downstream task model. Indeed, here the law

of normal behavior is constrained by the downstream application the dataset will

have. Once more, here nothing is assumed about the rarity of an instance. Still,

for a lot of cases in outlier detection (Chandola et al., 2009; Ruff et al., 2021) the

rarity assumption seems useful and practical, even if only as a starting point.

A different perspective for characterizing an instance as an outlier is to observe

the impact it has on model learning. Specifically, we can say the data instance

has high influence on the ML model if removing said instance from the train set

(leave-one-out retraining) would yield clearly different model parameter values.

Conversely, low influence instances are those that have little impact on parameter

values if removed from training. Generally instances indicating high influence can

be either outliers or just rare (high leverage). If dealing with predictor models,

then outliers are those that the model cannot predict with confidence if removed

from the train set. Otherwise, rare (high leverage) instances are those that when

removed from the train set, and despite qualitatively diverging from the majority

of other instances, the model can predict the instance with some confidence.

Therefore, just obtaining the high influence instances from a dataset is not enough

for properly detecting an outlier. Thus further filtering would be needed to account

for false positives – e.g. like user inspection.

For most practical cases, when measuring influence through leave-one-out retrain-

ing it becomes too computationally expensive. Fortunately, a famous proxy for the

leave-one-out strategy is the influence function (Cook & Weisberg, 1980), which

has been explored in robust statistics (Huber, 2004) for simple convex models.

Moreover, this has been recently extended to non-convex models like deep neural

networks (Koh & Liang, 2017; Hara et al., 2019). This resolved some tractabil-

ity issues, though estimation of data instance influence is still computationally

intensive. Once more, an influential instance is not necessarily an outlier.

Another similar approach is to use the concept of memorization by the model,

which is particularly relevant in deep neural networks (Arpit et al., 2017). The

main idea is that the only way for outliers and rare instances to be predicted by

the model is to be memorized (or overfitted) rather than learnt through model

generalization. This can be observed through a leave-one-out strategy, where

one can measure if there is a difference in prediction when said data instance is

Chapter 2. Background 16

in instead of out of the train set. If there is a marked difference in prediction

confidence, then the instance is said to be memorized. Since measuring this

through a leave-one-out strategy is computationally intractable in most cases,

recent literature has focused on tractable estimators for memorization metrics

(Arpit et al., 2017; Feldman & Zhang, 2020). Again, a memorized instance is not

necessarily an outlier, since it can be just atypical.

Several different assumptions can be made about the dataset setup. In our problem

we assume that outlier instances are due to corruption (Ruff et al., 2021; Liu et al.,

2020), but other processes may generate outliers – e.g. merging of two different

datasets from different sources, or in banking data a set of transactions that are

deemed fraud or atypical.

Another assumption is whether a curated training dataset made only of normal

data is available. Some OD methods only perform well if this is guaranteed, for

instance a Standard Variational Autoencoder (Kingma & Welling, 2014; An &

Cho, 2015) or One-Class Support Vector Machines (OC-SVM) (Schölkopf et al.,

1999). Though OC-SVMs can have their hyperparameters adjusted to deal with

this, by using a labelled validation set. Still, generally One-Class Classification

(OCC) methods (Moya & Hush, 1996) like OC-SVM should be trained using only

normal data. If methods are trained in this way, then literature often refers to it

as novelty detection. We note that some literature (Villa-Pérez et al., 2021) defines

the methods that train on normal data only as semi-supervised learning. In our

work, we take the perspective that semi-supervision includes labelled outliers –

e.g. (Ruff et al., 2019).

A different assumption is whether any supervision is provided for training, i.e.

labelled inliers and outliers. If labels are provided for all the instances, then this

becomes a standard classification problem. Standard methods like support vector

machines (SVMs) (Cortes & Vapnik, 1995) or logistic regression can be applied.

More advanced methods like deep learning classification (Litjens et al., 2017) can

be applied, specially for unstructured datasets (e.g. medical imaging). Though

class imbalance issues need to be taken into account, since typically outliers are

the minority class. If only a few labels exist, then semi-supervised methods

can be applied. One option could be semi-supervised Variational Autoencoders

(see Section 2.5.3.2), or the deep autoencoder in Ruff et al. (2019). For classic

(non-deep learning) semi-supervised OD methods see Görnitz et al. (2013); Liu &

Chapter 2. Background 17

Zheng (2006); Ruff et al. (2021). Still, most of the OD methods are unsupervised

Aggarwal (2016).

Several good surveys exist for traditional outlier detection methods. In Hellerstein

(2008) statistical methods and robust estimators are explored for numerical only

data. In Emmott et al. (2015) a survey and meta-analysis is provided on typical

outlier detection from the machine learning and data mining communities. It

describes proper benchmarking methodologies and provides an ontology for outlier

detection contexts. An earlier and influential survey about outlier detection and

outlier types can be seen in Chandola et al. (2009). More recently Ruff et al.

(2021) compares classic (shallow) outlier detection models with deep learning ones,

and best practices on when to apply each type. It also provides an empirical

comparison on several methods on a few datasets. Lastly, the book Aggarwal

(2016) gives an overall good overview of the field of outlier detection.

2.2.1 Types of Outliers in Data

Here we present a possible characterization of outlier types that are commonly

found in data. In this thesis we mainly focus on tabular and image data. However,

outliers are also present in other types of data like natural language, time-series,

or sensor data.

Given the typical taxonomy found in several surveys (Ruff et al., 2021; Chandola

et al., 2009), we can define the following general categorization for outliers:

• Point Outliers (Krishnan et al., 2016; Hendrycks & Dietterich, 2019) Data

instances are considered outliers if by themselves they do not fit what is

defined as clean or normal data. This class of outliers is the most common

in outlier detection literature. The typical corruption-based outliers explored

in this thesis tend to fit this class. The traditional outlier detection method

here is only concerned about evaluating each instance on its own.

• Context Outliers Data instances are only considered outliers depending

on a specific context such as time (Gupta et al., 2013), space (Zheng et al.,

2017), or connections on a graph (Akoglu et al., 2015). For example, an

individual instance in a time-series can be considered an outlier if it deviates

substantially from previous inlier instances in that series. Likewise, a node

in a graph is an outlier instance if it deviates substantially from its inlier

Chapter 2. Background 18

neighbors. Here outlier detection methods evaluate the instance in question

and its neighborhood (instances) to make an assessment about the outlierness

of the instance.

• Group Outliers (Chalapathy et al., 2018b; Muandet & Schölkopf, 2013;

Kasieczka et al., 2021) Data instances are considered outliers as a set or

group, and not individually like point outliers or context outliers. In fact,

instances by themselves may be considered inliers, but taken as a group they

are outliers. For instance, in a banking dataset a set of transactions might

look suspicious (outliers) when seen as a whole. Yet, alone each transaction

would seem quite normal. Outlier detection methods here evaluate instances

in groups, either already given or inferred later, and the decision about

outlierness is made for the entire set.

The most explored type of outliers from a traditional perspective are the point

outliers. Generally, literature tends to explore outliers that are not due to error

corruption, and thus have no underlying inlier (repair). For instance, these can be

a result of a merge between a normal data source and an outlier data source from

web crawling. These can be of two types: random outliers have no obvious pattern

across the outliers in the data; structured or systematic outliers (Diakonikolas

et al., 2018; Ruff et al., 2019) have a specific pattern that repeats across the

outliers in the data. The latter outliers are more difficult to handle for both outlier

detection and data repair. This is due to structured outliers being much easier to

overfit to. Some examples of systematic outliers that are not due to corruption

are: specific data classes from a merged data source that are undesirable (e.g.

pictures of dogs in an all cat dataset); transactions in a banking dataset that

have a specific pattern considered anomalous or fraudulent; intrusion detection in

a dataset of computer network connections, where “bad” connections (outliers)

can be of several specific types (e.g. KDD CUP 991); or even out-of-distribution

outliers in a test dataset (see definition below in the section).

Corruption-based Outliers (Liu et al., 2020; Ruff et al., 2021; Hendrycks &

Dietterich, 2019) This thesis focuses on outliers due to corruption, which are less

explored in literature. By and large these are point outliers, and our focus will

be on these. These type of outliers are due to the corruption of a subset of data

instances, which were previously considered clean or inliers. This means that it

1https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Chapter 2. Background 19

is possible to find a process that reverses this corruption, and thus restores the

underlying inlier. This reverse process is called repair. Usually, for each instance,

only some cells in a row (or pixels in an image) are corrupted, whilst the reminder

cells are left intact. Different types of corruption exist, in this thesis we focus

on two types: random errors or systematic errors. These can be due to storage

or transmission issues; data-entry issues; improper loading or transformation of

databases; crowdsourcing of data; or merging two different sources of data, e.g.

different data formats; and others.

Broadly we can define the following error corruption types:

• Random Errors (Liu et al., 2020; Khademi et al., 2021; Krishnan et al.,

2016; Hendrycks & Dietterich, 2019) Outliers are created by a corruption

transformation affecting each instance independently using an unknown

distribution. Typically the cells (or pixels) corrupted are selected indepen-

dently at random as well. A simple example is Additive white Gaussian

noise (AWGN). This type of error exhibits no clear anomalous pattern across

the outlier instances. Hence the errors cannot be properly predicted by

an ideal model, though a very flexible model can overfit the errors. These

outliers can be repaired via regularization or data-reweighting, see Section

2.5.2 and model proposal in Chapter 3 for model examples. For a more

in-depth discussion on the impact of these errors in generative models please

see Sections 2.5 and 2.5.1.2.

Some examples: additive noise with zero mean (e.g. AWGN), due to sensor

or measurement error; impulse noise in images (e.g. salt-and-pepper noise);

shot noise in images; Poisson-Gaussian noise in medical imaging; random

category change due to mislabelling (in categorical feature).

• Systematic Errors (Liu et al., 2020; Krishnan et al., 2016; Lew et al.,

2021; Broaddus et al., 2020; Aigrain et al., 2017) (Boyat & Joshi, 2015,

section 2.10) Outliers result from a nearly deterministic transformation (plus

potentially some noise) applied repeatedly to a subset of instances in the

data. Further, typically the same cells (or pixels) are affected, but not

always as there can be some positional randomness. This also fits the classic

definition of systematic error as seen in measurement errors of scientific

instruments in physics (Taylor, 1997). A simple example is a specific typo

Chapter 2. Background 20

in a categorical feature that is repeated across several instances. Another

example is the occlusion or missingness of patches of pixels in the same

position across several images in a dataset. As we can see, this type of error

exhibits a specific anomalous pattern common to several outlier instances.

Hence these errors could be predicted by an ideal model. If these outliers

are frequent in the data, then this may cause some outlier detection methods

to more easily overfit and learn the errors. This is problematic for the

performance of both outlier detection and data repair processes. These

outliers can be repaired via semi-supervised latent disentanglement models,

see Section 2.5.4 and model proposal in Chapter 4. Once more Sections 2.5

and 2.5.1.2 discuss the impact of errors in models.

Some examples: watermarks; position-based artifacts on images (e.g. errors

due to camera sensors, or medical imaging sensors); replacement by default

values in data transformation processes (e.g. NaN’s) or sensor data (e.g.

0’s); mislabelling due to deterministic change of categories (e.g. a format

issue, or data-entry issues).

More generally The definition above covers a major portion of point

outliers that are originated by systematic error corruption (Liu et al., 2020;

Krishnan et al., 2016; Aigrain et al., 2017). Hence in this thesis the focus

was on this type of systematic error. However, there can still be outliers due

to systematic errors that do not conform to this definition. For example,

systematic errors that corrupt every single feature (cell or pixel) in a data

instance are not covered. This can be the case for images that are blurred

in all pixels by some systematic pattern. Another example are systematic

errors that result from the combination of several underlying inlier instances

from the original dataset. This can be the case when transmission errors

occur in video images and there is an overlap between several frames. Lastly,

as discussed before, we note to the reader that systematic outliers can also

be due to different processes other than error corruption (and thus have no

repair).

• Adversarial Errors (Diakonikolas et al., 2018; Liu et al., 2020) This

corruption is due to an attacker corrupting data instances with the goal of

fooling a machine learning model – e.g. wrong classification decisions. This

is done with malicious intent, in order to exploit the model at a later date.

Chapter 2. Background 21

Out-of-Distribution Outliers (Yang et al., 2021; Ren et al., 2019) These outliers

have become more important recently in the field of deep learning reliability and

safety. Data instances are outliers if they belong to a different type of dataset

than the one the model was trained on. In fact, these outliers express patterns

that are not found in the original training dataset. These outliers are also point

outliers.

Once more, this thesis will be focusing on outliers that are due to corruption. In

particular both random errors and systematic errors are explored. In fact, all

models and scenarios explored in this thesis focus on point outliers.

2.2.2 Problem Definition for Outlier Detection

Given the notation in Section 2.1, the task of traditional outlier detection (OD)

on dataset X is that of finding the ground-truth labels y ∈ Y, for each instance

x ∈ X . Assume there exists some ideal model gθr that has been trained using X ,

where θ expresses the parameters of the model. Then this ideal model is robust

to corruption for this task if it is able to obtain the labels y of set Y correctly.

In reality this may not be possible, hence a model should strive to detect the

majority of outliers in X , i.e. instances with ground-truth y = 0.

In practice, the model gθr should be able to produce a score Aθ, which will be used

to rank instances. Again, θ reflects the dependency on model parameters. Usually

Aθ(x) is termed an anomaly score for x. A higher (scalar) value for Aθ(x) means

that instance x is more likely to be an outlier. Accordingly, we can formally define

the outlier detection process as

y =

0, if Aθ(x) ≥ γ

1, if Aθ(x) < γ
(2.1)

and as such we can define the set of outlier instances as O =
{
x ∈ X |Aθ(x) ≥ γ

}
.

In an ideal setting, score Aθ and threshold γ are jointly optimized such that

all outliers are captured in O. In reality, score Aθ has limited flexibility due

to the underlying model gθr in practice. Further, we often see in practice γ

being user-defined as to control OD performance. The setting of γ will often

represent a tradeoff between precision and recall as represented by a point in the

precision-recall curve; though a good score Aθ will be able to mitigate this aspect.

Chapter 2. Background 22

Now for the task of cell outlier detection, we need to obtain a score that allows

to rank cells of an instance in terms of being corrupt, i.e. cell outliers. We can

define a different score Aθd for each feature d, which allows us to decide if a cell

xd of instance x is indeed a cell outlier. Once again, this score is derived from

the same underlying model gθr , which has been trained on a corrupted dataset.

Like before, a higher (scalar) value for Aθd(x) means that xd is more likely to be

a cell outlier. Note that this score depends on the entire instance x, instead of

just on cell xd. The reasoning is that the context provided by the other cells in

the instance may be needed to provide a good decision, i.e. a score. Therefore,

for some outlier instance x ∈ O, we can define the set of cell outliers therein as

C =
{
d ∈ {1, · · · , D} | Aθd(x) ≥ γd

}
, where γd can be tuned for each feature d.

The vast majority of literature focuses on just finding the outlier data instances.

Nonetheless, by neglecting cell outlier detection a method fails to provide which

cells are to blame for the anomalous behavior. This can be useful for interpretabil-

ity, but also later in data repair. Moreover, we note that all anomaly scores

defined here and used throughout this thesis only apply to the task of detecting

point outliers (see Section 2.2.1).

2.2.3 Classic Methods: Machine Learning and Data Mining

In this section, we discuss classic outlier detection methods from the statistics,

machine learning (ML) and data mining (DM) communities. A more in-depth

discussion can be found in Aggarwal (2016) or Ruff et al. (2021). The vast majority

of these methods can only be applied to point outliers (see Section 2.2.1), though

in some cases modifications can be made.

2.2.3.1 Statistical Methods

Most of the early work in outlier detection was done by statisticians. The main

idea behind this approach is that in a probability distribution representing normal

data the outlier instances should be in the low probability regions. Respectively

inlier instances should be in high probability regions. Therefore, after a probability

distribution is fitted to the training dataset, an inference test decides whether

some instance belongs to the distribution. If not, then the instance is an outlier.

These techniques assume inliers are generated by a process that is modelled

Chapter 2. Background 23

by a probability distribution p with parameters θ. Typically, the parameters

of these models are estimated via maximum likelihood estimation (MLE). A

technique is considered parametric if it makes strong assumptions about the

data distribution. Contrarily, the technique is considered non-parametric if the

probability distribution is chiefly determined by the training data.

Lastly, we note that some simple statistical methods can be used for the practitioner

visually detecting outliers. For instance, a histogram may be used to detect bins

that are anomalous, and their points marked as outliers. Further, box-plots and

Q-Q (quantile-quantile) plots can aid in detecting outliers visually. However, this

requires manual intervention by the user, and may become problematic for large

datasets.

Statistical Tests and Distances These techniques usually pick a specific

distribution to model normal data, and then either evaluate a distance or perform

a statistical test. The most simple example of this type of technique is using a

Gaussian distribution as a model for the generative process of normal data. In

this case mean µ and variance σ are estimated via MLE estimators. The anomaly

score is then given by the distance between the unseen instance x and the mean µ.

This number can be reported as the number of standard deviations σ, as expressed

by the z-score. If the distance is bigger than 3σ then the instance is marked as an

anomaly. The reasoning is that most of the probability mass is within the region

µ± 3σ, i.e. around 99%.

On the other hand, for multivariate data the Mahalanobis distance can similarly

be used to measure the distance of instance x to its mean µ, but correct for

volume and direction using the covariance matrix Σ. However in high dimensions

this anomaly score may become meaningless when it comes to outlier detection,

due to it revolving around a single value. This is due to the probability mass of a

high dimensional Gaussian distribution being concentrated in “shell” surrounding

the mean.

More sophisticated options include the Grubb’s Outlier Test (Tietjen & Moore,

1972) for univariate data, or Dixon’s Q Test (Dean & Dixon, 1951) in case some

prior knowledge about outliers is known. Both these statistical tests assume

normal data is generated by a Gaussian distribution. For both a sample statistic

is computed, and then according to confidence level a threshold defines if the

Chapter 2. Background 24

instance is an outlier or not. Lastly, if trying to detect multiple outliers, then

Rosner’s Test (Rosner, 1983) may be used instead.

Likelihood or Density Estimation These type of techniques usually learn

a probability distribution on the training data, using either parametric or non-

parametric models. Then an anomaly score for some test instance is given by the

negative log of the probability distribution pθ(x), i.e. the negative log-likelihood

(NLL).

A good example of a non-parametric method is kernel density estimation (KDE),

and then using an NLL score for the test instance. However, this method works

best if the training data as few or no outliers. Otherwise, these can contaminate

the density estimation process and assign probability mass where none should

exist (outlier regions). A robust KDE (RKDE) method (Kim & Scott, 2012) was

developed with this in mind, thus providing a KDE that is less sensitive to outliers

in the training data.

Another popular approach is to use a Gaussian Mixture Model (GMM) for density

estimation, and again use the NLL score. This is a parametric approach, where

the Gaussian component parameters and membership probabilities need to be

learnt. If outliers are present in the training data then some caution should be

taken if they are numerous. If the outliers can be represented by a cluster (if it

can be identified) then that GMM component should be excluded from the NLL

score. This can happen with structured outliers. In this case, cluster membership

probability can also be used, using its negative log. However, for dispersed outliers

in the training set, other strategies should considered if they are numerous. For

instance, an ensemble of GMMs (eGMM) is proposed in Emmott et al. (2015)

where the authors fit several GMM models with varying number of components.

Then they average across GMMs models to obtain the final distribution, like in

other ensemble methods. This averaged distribution is used by the NLL anomaly

score.

A different option which can be quite practical is to use histogram-based density

estimation. This is a very simple non-parametric approach. If the histogram is

obtained by using uncorrupted training data, then we should see if a test instance

falls within the boundaries of any bins. If not, then the instance is an outlier.

Alternatively, if training on corrupted data, then the small size of some bins may

Chapter 2. Background 25

determine whether those instances are outliers.

Moreover, in the field of robust statistics (Huber, 2004; Barron, 2019) authors have

proposed different heavy-tailed distributions in order to make training parametric

models less sensitive to outliers. This is important when a significant amount of

outliers are present, or in the case of structured outliers (e.g. due to systematic

errors). In this case, heavy-tailed distributions may allow for better density

estimation of the normal data, and thus a better NLL anomaly score. For more

details, we discuss this further in the context of generative modelling using VAEs,

see Section 2.5.2.

Statistical Depth These types of methods organize the data instances into convex

hull layers, where outliers are instances in the outer most layers. In essence, outlier

instances are at the border of the (training) data space. These methods exploit the

concept of statistical depth (Mosler, 2013) from non-parametric statistics, where

the most central region serves as a median for the data. Some good examples of

such models are Kwok & Ng (1998); Fernández-Francos et al. (2017); Staerman

et al. (2020).

2.2.3.2 Spatial Proximity Methods

These algorithms have been developed mostly by the data mining community.

The main idea is that the outlierness of some test instance depends principally

on the instances in its neighborhood (proximity). Particularly, it assumes that

inliers have dense neighborhoods, with several data instances in its proximity.

Contrarily, outliers are far apart from their neighbors. In order to produce an

anomaly score, mainly two different ways exist to account for instances in the

proximity. These are either distance-based or density-based. Given their nature,

these are considered non-parametric methods. This strategy may not work well in

the case of structured outliers, since these may cluster together.

Distance-based These models judge a test instance based on the distance to its

neighbors. For instance, one can use the k-nearest neighbors (KNN) distance to

obtain an anomaly score for a test instance. In this case, the top h data instances

are those whose distance to their kth nearest neighbor is greatest. However, the

average of all k nearest neighbors could also be used. A good scalable example of

this type of model is Ghoting et al. (2008), which uses a KNN-type distance. An

Chapter 2. Background 26

older model can be seen here Bay & Schwabacher (2003). However, KNN distance

can perform badly in datasets where data clusters may have large variation in

density.

Density-based These models were created to correct the above issue with varying

density of clusters in distance-based models. Instead of using an anomaly score

based on distance, they use a relative concept of density. No actual density

estimation is needed, for instance a surrogate like euclidean distance can be used.

The idea here is to compare the density of a test instance to the density of its local

neighbors. The ratio of these two will define the anomaly score for a test instance.

The main assumption is that inliers and the instances in its neighborhood will have

similar densities. Conversely, the density for an outlier is considerably different

compared to its neighbors. Some examples of this type of model are the Local

Outlier Factor (LOF) (Breunig et al., 2000), LOCI (Papadimitriou et al., 2003)

and DBSCAN (Schubert et al., 2017).

2.2.3.3 Clustering Methods

The main idea is to use a clustering method to segment the dataset into clusters,

according to some similarity or distance measure. The assumption is that similar

data instances will group to the same clusters. Hence, clusters of inlier data should

be separable from outliers. After clustering the data, the centroids representing

the normal data should be chosen. Either manually, or using some labelled data

(e.g. semi-supervision). Otherwise, one can also train the clustering method using

normal data only if available. The anomaly score is thus the average distance of

the test instance to the chosen centroids. An example of an hard-clustering option

can be seen here (K-means) Chawla & Gionis (2013), and a soft-clustering option

can be found here (GMM) (Kuusela et al., 2012).

2.2.3.4 Kernel Methods

These methods have mostly been developed by the machine learning community.

Methods in this category rely on the kernel trick, which maps each instance to

a high-dimensional feature space, i.e. kernel space. These methods are based

on SVMs (Support Vector Machines), and so they learn a decision boundary in

kernel space that separates normal data from potential outliers. Accordingly, data

instances that are outside of the decision boundary will have positive residuals,

Chapter 2. Background 27

whilst interior instances will have negative residuals. Anomaly scores are defined

by the residuals after each test instance is projected onto the decision boundary.

Usually the user needs to pick a kernel to be used, and a typical one is the Radial

Basis Function (RBF).

Two models are the most prominent, those being the One-Class Support Vector

Machine (OC-SVM) and the Support Vector Data Description (SVDD). Note that

both of these models are often trained in an OCC setting, where only normal data

is used. In this case literature often refers to this as novelty detection. Though

the term outlier detection still applies generally.

OC-SVM (Schölkopf et al., 1999) This method uses an SVM type architecture

to learn a decision boundary in kernel space that separates the training data

from the origin. This decision boundary is given by an hyper-plane. The fraction

of data instances that are allowed to violate this boundary is controlled by an

hyperparameter associated with the slack variables of OC-SVM. In fact, these

instances are the outliers. Therefore, making OC-SVM robust to the presence of

outliers in the training dataset.

SVDD (Tax & Duin, 2004) This method also uses an SVM type architecture

to learn the smallest hyper-sphere (decision boundary) in kernel space that

encapsulates the normal data. This model is usually used in an OCC setting,

where only normal data is provided for learning. Therefore it assumes training

data is clean, without corruption. Of course this is not true in most cases. So

there is an hyperparameter to allow a fraction of the training data to be ignored

when learning the decision boundary. Moreover, if the kernel used by SVDD is

the RBF then essentially this becomes a version of OC-SVM.

2.2.3.5 Projection-based Methods

These algorithms rely on random projections of the dataset in order to compute

the anomaly score. They are mostly prominent in the data mining and machine

learning communities. Two algorithms are discussed: Isolation Forests (IF) (Liu

et al., 2008), and the Lightweight Online Detector of Anomalies (LODA) (Pevnỳ,

2016).

Isolation Forests (Liu et al., 2008) The main assumption here is that outlier

instances are rare and quite different from normal data. IFs determine if instances

Chapter 2. Background 28

are outliers if they can be readily isolated by random axis-parallel splits. These

random splits are carried out in an isolation tree. Like Random Forests, IFs is

an ensemble of several isolation trees, each a highly random decision tree. The

decision points for the random decision trees are chosen by selecting a feature

uniformly at random, and then choosing splitting thresholds uniformly at random

in the feature value range. Since outliers are easily isolated by IFs, then outliers

should have substantially shorter paths in the tree (from root node). Hence, the

anomaly score is defined as the average depth of each data instance across trees in

the ensemble. Isolation Forests have proven to be one of the most effective outlier

detection methods (Emmott et al., 2015). They are great off-the-shelf with few

hyperparameters, and have great scalability.

LODA (Pevnỳ, 2016) This is a recently proposed model that relies on projecting

the data onto several random Gaussian noise vectors. This is done through the

inner product of each data instance and a random noise vector. The main idea is to

produce several weak outlier detection models via density estimation (histograms),

one for each random projection of the dataset. Note that technically other density

estimation methods can also be used. The anomaly score is just the average NLL

across the ensemble of weak density estimators. Random projections here not

only make cheaper the cost of density estimation in high dimensions, but also

make density estimation more robust to outliers when used in ensembles.

2.2.3.6 Reconstruction-based Methods

These methods perform dimensionality reduction on the training dataset, and aim

to reconstruct back the same data. They may use a training loss that enforces

this identity mapping from data instance to data reconstruction, or use some kind

of matrix factorization technique. Since these models usually learn to reconstruct

normal data well, they can be used to detect outliers by failing to properly

reconstruct them under the learnt model. The anomaly score typically used is the

reconstruction error, which measures the distance between the original instance

and the reconstructed one. A higher distance means that instance might be an

outlier. These models unlike the other classic methods in this section

allow for cell outlier detection . In other words, it is possible to discover

which feature(s) have caused the instance to be an outlier.

Classic methods include Principal Component Analysis (PCA) (Jolliffe & Cadima,

Chapter 2. Background 29

2016), and any of its variants like probabilistic PCA (PPCA) (Tipping & Bishop,

1999) or kernel PCA (KPCA) (Mika et al., 1998). The classic PCA is a linear

model, whilst KPCA allows for non-linearity through the kernel trick. A robust

PCA (RPCA) (Candès et al., 2011) has also been proposed, and it provides

robustness to the presence of outliers in the training dataset. Unlike other PCA

methods, which typically will need to train on normal data only to work well. We

address RPCA and related models in more detail in Section 2.5.2, and a deep

learning variant in Section 2.5.2.2.

Autoencoders (Goodfellow et al., 2016) are also in this model category, offering

a non-linear version of PCA through the application of neural-networks (deep

learning). In fact, an autoencoder with a linear encoder and decoder will mimic

the behavior of classic PCA. Further, in a similar way, VAE (Kingma & Welling,

2014) is the non-linear version of PPCA.

2.2.4 Database Systems Methods

The database research community has also considered the problem of outlier

detection, specifically for tabular data and relational databases. The community

has not only focused on the problem of traditional outlier detection, i.e. finding

outlier instances, but also on the issue of cell outlier detection. The community

has also had more focus than the ML community on outliers that are due to

corruption of a clean dataset. In this case, outlier detection is often called error

detection. Most of the work has focused on logic rules type methods as applied to

outlier detection, or even data repair. A good survey about the field can be found

in Ilyas & Chu (2015), and a shorter one in Chu et al. (2016).

Generally two types of methods have been explored: rules-based and pattern-based.

Though in last few years the community has also been incorporating machine

learning into to their solutions.

Rules-based These models rely on logic-based data quality rules that are either

supplied by the user, or obtained by using some software (a rule miner) to distill

them from clean data. These rules in literature are often called integrity constraints

(ICs), and tend to be a subset of first-order logic. These rules specify constraints

on feature values that only hold for inliers. They can capture errors such as

instance duplication, missing values and inconsistencies in feature values (cell

Chapter 2. Background 30

outliers). Most often a program is written that enforces these rules on a tabular

dataset. This program then finds a violation of the rule by a set of instances,

and potentially may highlight the outlier cells that do not conform to the rule.

Still inferring which cells are to blame is a complex problem, and the rule set

may not be specific enough to provide that level of detail. Popular examples

include functional dependencies (FDs) (Kolahi & Lakshmanan, 2009), conditional

functional dependencies (CFDs) (Fan et al., 2008) and denial constraints (DCs)

(Chu et al., 2013b). All of these represent a subset of first-order logic, where the

most flexible one are DCs. Both FDs and CFDs express a “if-then” relationship

(dependence) between features of a dataset. CFDs are more specific since they

only apply when certain feature values appear in the data instance.

A well rounded survey on just integrity constraints for data cleaning can be found

in Fan (2015), where both instance and cell outliers are explored. Examples of

rule miners can be found in (Fan et al., 2010) for CFDs, and in (Chu et al., 2013a;

Pena et al., 2019) for DCs.

The main advantages of the rules-based approach are:

• Interpretability If the user is a subject-matter expert then the violated

rules can potentially explain why the instance is an outlier. For instance, in

the case of a CFD it can be seen as a violation of a dependence relationship

between features.

• Specificity Rule-based approaches allow the description of what constitutes

an outlier in specific detail, which allows for guarantees that if a violation

exists then the outlier will be reported. Machine learning methods for

outlier detection usually do not allow for such guarantees, even in the case

of training data with a large amount of labelled examples.

• Summarization These methods often operate by having a set rules that

describe the normal data, thus summarizing all its defining patterns. Alter-

natively, the rule set may only summarize the outlier detection process.

Nonetheless, there are practical issues when trying to use rule-based systems. The

more pressing issues are:

• Sourcing the Rules Obtaining the rules can be difficult, and either one is

a subject-matter expert that can write first-order logic to define the rules;

Chapter 2. Background 31

or instead, a rule miner is used on some uncorrupted training data to obtain

these rules. This uncorrupted data is often called a clean master database.

• What cell to blame? Assume the outlier process is due to corruption,

and one wishes to perform cell outlier detection given a set of rules. It is not

always possible to specify which cell(s) are to blame once an outlier instance

is found to violate the rules. This is because several different combinations of

cells being corrupted may have originated the rule violation. We may never

know which without manual inspection, if that. However, when several rules

are applicable to the outlier instance, then it may be possible to identify

the corrupt cell(s) through logical inference.

Pattern-based These methods rely on user-defined transformation, which can

be defined in a scripting language or some domain specific language (DSL). These

transformations are in essence programs that provide a way to detect outliers,

either by defining what is an outlier or instead an inlier. Sometimes the user may

also define how to transform an outlier into a inlier – i.e. data repair. As such,

they are far more broad in their coverage than integrity constraints. These can

define semantic, statistical or even logic patterns to be applied to the dataset.

They can be used in interactive fashion to let the user explore the dataset and

perform manual data cleaning – i.e. data wrangling task.

Typical use cases would be a script in a DSL that defines: the correct format for

a categorical feature; a change in date-time format in column for tabular data;

an upper or lower bound in a continuous feature; a check on whether continuous

feature is in correct scale unit; a check on whether missing value entries are

present.

A great example of this type of method is the Data Wrangler (Kandel et al.,

2011). Another examples is Google’s OpenRefine (Verborgh & De Wilde, 2013).

KATARA (Chu et al., 2015) offers an automated framework for data cleaning

with semantic patterns instead of traditional rules. In this case, semantic patterns

are obtained from DBpedia. NADEEF Dallachiesa et al. (2013) also allows for

user-defined transformations.

Frameworks-based (Holistic) There is also a tradition of work on end-to-

end frameworks, or software, that focuses on combining different existing outlier

detection methods to provide a novel solution, which can be superior to just a

Chapter 2. Background 32

single model. These can combine machine learning, data quality rules and pattern-

based approaches together. This contrasts with machine learning research which

mostly focus on novel model approaches. Often in framework papers, practical

considerations like deployment and computational complexity are taken more

seriously. Moreover, in the same spirit of end-to-end frameworks, some works also

tackle the problem of outlier detection and data repair together.

Some examples of these types of frameworks are DBoost (Mariet et al., 2016), which

integrates several classic ML outlier detection methods; NADEEF (Dallachiesa

et al., 2013) integrates different types of rules (e.g. CFDs) and user defined

transformations for cell outlier detection and data repair; BoostClean (Krishnan

et al., 2017) proposes an ensemble of methods via statistical boosting for cell

outlier detection, and for repair using user-defined functions.

2.2.5 Deep Learning Methods

Outlier detection can prove quite challenging when nonlinear or hierarchical

dependencies between features are present in the dataset. An example is the

dependencies between pixels in an image, and how groups of pixels are arranged.

For instance, an image of a human face has specific dependencies between pixels.

High dimensional data is also challenging, since scalability of the method becomes

important and learning abstractions is often needed for classification, e.g. outlier

detection. Further, in high dimensions typical statistical distances start to be

ineffective, e.g. Mahalanobis distance. All of these are problems for classic ML

methods in outlier detection. Unsurprisingly, Isolation Forests which is a nonlinear

method tends to outperform a lot of other classic methods. It also scales quite

well in high dimensions and size of the dataset. The reality is that most classic

outlier detection methods are linear, or lack the ability to capture hierarchical

dependencies between features. This makes classic methods not as competitive

for high dimensional tabular or image data, more details in Zimek et al. (2012). A

good discussion about classic methods (shallow) and deep models is found in Ruff

et al. (2021). Relatively recent surveys about deep learning for outlier detection

are found in Ruff et al. (2021); Pang et al. (2021); Chalapathy & Chawla (2019).

One effective way to learn hierarchical or nonlinear relationships between features

is to use neural networks, i.e. deep learning. Another aspect is that deep learning

is quite flexible and can be applied to different types of data. Examples of deep

Chapter 2. Background 33

learning models exist from tabular data, to images, to speech, to natural language,

and even music data. General surveys about deep learning and its applications

are Dong et al. (2021), and Pouyanfar et al. (2018). A great book on the topic is

Goodfellow et al. (2016). Deep learning for tabular data is discussed in Borisov

et al. (2021), where pros and cons are presented. The survey also discusses which

tabular data tasks are better modelled by deep learning.

As discussed early on (in Section 2.2) supervised, semi-supervised, and unsu-

pervised scenarios are possible. The latter two being the most common. For

the supervised scenario, a deep learning classifier should be used. In the semi-

supervised scenario often this means an autoencoder model combined with some

classifier or classic outlier detection method. For instance, in Ruff et al. (2019)

a semi-supervised model relies on autoencoder pre-training, and then reuses the

encoder network for the actual method. In the unsupervised scenario an autoen-

coder model has typically been used, which may or may not be combined with a

classic method.

The autoencoder (AE) (Goodfellow et al., 2016) is a popular and effective deep

learning method for nonlinear dimensionality reduction, or representation learning.

A probabilistic version is the variational autoencoder (VAE) (Kingma & Welling,

2014). A significant amount of recent outlier detection methods rely on using the

latent space of an AE, or VAE, as input to a classic outlier detection method.

This works well if the inliers and outliers are somewhat separable in latent space.

If these methods are trained end-to-end they are usually called hybrid methods,

where the AE is seen as a feature extractor. Some unsupervised examples include

combining a GMM with an AE latent space in DAGMM (Zong et al., 2018a);

combining One-Class SVM with an AE latent space in AE-OCSVM (Nguyen &

Vien, 2018b); and combining robust subspace recovery (RSR) in AE latent space

in RSRAE (Lai et al., 2019).

In these hybrid models the anomaly score can be defined by the chosen classic

method. However, most autoencoder models use the reconstruction error, or

likelihood in VAEs, as the anomaly score. For instance, Dehaene et al. (2019); An

& Cho (2015); Wang et al. (2017b) use a reconstruction-type score.

Deep One-Class Classification (OCC) models have also been developed. These can

be trained on corrupted data, as long as corruption level is low enough. Though

Chapter 2. Background 34

ideally normal data (inliers only) should be used if available. These methods

learn a discriminative decision boundary, like their classic counterparts. Although,

these use neural networks to learn very flexible feature maps, which are ideal

for capturing nonlinear or hierarchical dependencies. Unlike their classic counter

parts, where the kernel feature map is shallow and fixed before training. For

instance, Ruff et al. (2018) learns a data enclosing hyper-sphere in feature space

like SVDD; and Chalapathy et al. (2018a) learns a hyper-plane in feature space

like OC-SVM.

Lastly, deep learning models have been developed for outlier detection in the

presence of systematic error corruption. As an example, recently the Transformer

based model in Liu et al. (2020) was proposed. This model can also tackle

adversarial outliers, which are the result of corruption meant to fool the model.

That said, the field of adversarial attacks is out of scope for this thesis.

2.3 Data Repair Task

In this section, we discuss the data repair task in more detail. We define it formally

and review prior literature on the topic. Literature from database, statistics, and

machine learning communities is explored.

An issue with several of these models is the reliance on either encoding prior

knowledge in the model, or substantial labelled data or a clean dataset to train on.

Some examples of prior knowledge are: data-specific or corruption-specific prior

distributions or architectures; logic rules or data schemas; scripts that define data

transformations. The novel models proposed in this thesis have integrated outlier

detection and data repair. Further, they do not require large curated datasets for

training or encoding complex prior knowledge.

2.3.1 Problem Definition for Data Repair

Given the notation in Section 2.1, the task of data repair is that of finding the

ground-truth inlier x̃ for some outlier instance x ∈ O. This assumes the outlier

detection task has been carried out, and thus the set of outliers O has been found.

In practice, finding the ground-truth x̃ is generally not possible. Instead, the

repair task tries to provide an estimate that is close enough, i.e. x̂ ≈ x̃. The

outlier instance is the result of the application of a corruption transformation, i.e.

Chapter 2. Background 35

x = fcr(x̃). Hence, the model gθr will learn how to reverse such transformation and

provide an estimate x̂. Here we say reverse since the corruption transformation

fcr may not itself be invertible.

Generally, taking the above into account, we can define the repair transformation

as x̂ = gθr(x). In practice, the models gθr that are used to estimate an instance

repair x̂ tend to have an associated loss function (e.g. deep generative models).

After all, this may be the same loss function used to train the model. Therefore,

after model training, repair estimates are usually produced by optimizing this

loss function given outlier x. This process will produce a point-wise estimate for

x̂, however other inference strategies could be used – e.g. MCMC methods like

pseudo-Gibbs sampling as described in (Rezende et al., 2014), and used in Section

3.8.7 of Chapter 3; or instead (Mattei & Frellsen, 2019). Assuming Fθ is the loss

function, for some ideal model gθr we can define the repair transformation as

x̂ = gθr(x) = arg min
x′

Fθ(x′;x), (2.2)

where a lower loss function value corresponds to a more plausible repair estimate

under the trained model. This plausibility relates to both how clean the repair

instance is, but also how realistic it might be according to other inlier data

instances. Again, note that the loss Fθ depends explicitly on model parameters θ.

That said, one very important point is that gθr must be robust to the corrupted

training dataset. After training, this is reflected in Fθ where small loss values

should be seen for inliers, and large loss values for outliers. In other words, this

means that gθr places more importance in modelling inlier data than on outlier

data.

Similarly, we can express this repair transformation under a probabilistic model

framework. In fact, here a point-wise estimate corresponds to either maximum

likelihood (MLE) or a maximum a posterior (MAP) estimate. In this case, we can

define Fθ(x′;x) = − log pθ(x
′|x) and thus the repair transformation is given as

x̂ = gθr(x) = arg max
x′

log pθ(x
′|x), (2.3)

where inliers have high likelihood values under distribution pθ(x
′|x), and outliers

have low likelihood.

Chapter 2. Background 36

2.3.2 Database Systems Methods

Quite a few works from the database community take an end-to-end approach to

data cleaning, and present a solution for both outlier detection and repair. This

is motivated by wanting to provide a real solution to the problem of corrupted

data in practice, which includes both outlier detection and repair. A good survey

is Ilyas & Chu (2015), and more detailed book on the topic is Ilyas & Chu (2019).

Most methods fall in the framework (holistic) category, see Section 2.2.4, where

several approaches are combined: logic rules, transformations by a user or another

source, machine learning or statistical methods. This is important to point out,

since generally logic-based rules (integrity constraints) by themselves are not able

to provide a repair proposal for a corrupt cell. Instead, they use other user-defined

transformations, statistical measures, or even a uncorrupted master dataset to

copy from. Having said that, the biggest advantage is that any proposed cell

repair needs to be logically consistent with the integrity constraints in place.

It is important to point out that almost no method here can be applied directly to

our problem setting (see Section 2.1). In this thesis, we assume a corrupt training

dataset is either given as is, or with a small labelled set of inliers and outliers.

This is because we aim to minimize required user know-how and intervention

for method usage. In addition, we aim to develop models that can be applied

generally, not just tabular datasets. Therefore, obtaining rules or scripts for use

in data cleaning is not practical in our setup. Particularly, most of these rules

can only be obtained by substantial user interaction, or access to (clean) master

datasets.

These frameworks usually consider three types of repair operations (Fan, 2015):

exclude from dataset; delete and replace by a similar instance from the dataset, or

from a master dataset; use a cost-function to measure how different the repaired

instances are from the corrupted ones. The latter has become much more common

recently (Fan, 2015; Ilyas & Chu, 2019), and provides a way to enforce a total

cost budget. This allows the user to cap how much change the corrupted dataset

undergoes during repair. The cost-functions can be similarity measures, string

edit distances, or even statistical distance measures.

Chapter 2. Background 37

Relevant Frameworks

Now we briefly discuss a few relevant works. ERACER (Mayfield et al., 2010) is

a data-driven approach for missing value imputation, using a Bayesian Network

to represent the clean data.

NADEEF (Dallachiesa et al., 2013) performs repair through user-defined trans-

formations, and repairs are logically consistent with data quality rules.

LLUNATIC (Geerts et al., 2013) is a data cleaning framework that considers

different kinds of integrity constraints, uses database schemas, and applies a

cost-function based approach to repair.

SCARE (Yakout et al., 2013) proposes cell value repairs via a Dependency

Network (graphical model) (Heckerman et al., 2000) learnt using clean master

data. The proposed cell repairs maximize the log-likelihood of the graphical model,

and the user can define a budget for the entire repair process.

BoostClean (Krishnan et al., 2017) is a framework that provides repair by

using ensembles of common ML models and user-defined transformations. These

ensembles are learnt via boosting (machine learning). It requires a validation

dataset that is considered clean (uncorrupted) by the user. This validation set is

then used to improve the performance of the ensemble in the data repair task. In

essence, each weak model will propose a cell repair, after which a decision is made.

HoloClean (Rekatsinas et al., 2017) proposes a probabilistic model for data repair

that incorporates several signals. These signals range from integrity constraints,

dictionaries, knowledge bases, descriptive statistics, user-defined transformations,

and others. Emphasis was given to denial constraints and descriptive statistics,

which need to be sourced by the user. This probabilistic model is similar to Markov

Logic Networks (Richardson & Domingos, 2006), a type of graphical model that

incorporates first-order logic. HoloClean has become a popular framework for

data repair, and until recently registered top performance compared to other

frameworks.

2.3.3 Statistical and Machine Learning Methods

Data repair as defined in Section 2.3.1, where the model is learnt on corrupt data,

has not been explored that much. Most existing machine learning models able to

Chapter 2. Background 38

repair data either assume:

1. Complex prior assumptions or model architectures that only

apply to certain types of corruption, or in certain types of data.

For instance, prior distributions for specific types of corruption in images;

or data descriptions (schemas, logic, etc) for tabular data.

2. Require large amounts of labelled data (inliers vs outliers).

3. Require clean data (without corruption) to train on.

2.3.3.1 Specific to Tabular Data

Particularly, very few works in machine learning have focused on data repair for

tabular data, where the training data is corrupted. Recently, some works have

focused on melding probabilistic models with either logic rules or user-written

programmatic descriptions of clean data. For instance, HoloClean (Rekatsinas

et al., 2017) is an example of probabilistic relational models for data repair, after

erroneous cells have been detected. On the other hand, PClean Lew et al. (2021)

defines a probabilistic programming language and inference for repair of already

detected erroneous cells. In fact, in PClean the program written by the user

defines a probabilistic relational model (Friedman et al., 1999), such that the

dataset schema is encoded.

From a different perspective, if the erroneous cells have been detected and the

majority of data is uncorrupted, then data imputation methods can be used. Note

that this is generally not possible without some method to detect said corrupt

cells. Furthermore, this outlier detection method would need to be trained on

corrupted data. Having said that, over the years several works have focused on

the problem of imputing missing values for tabular data. Classic work includes

Dempster et al. (1977) that defines the Expectation Maximization algorithm for

missing data at random. Another classic example is the use of Markov Chain

Monte Carlo (MCMC) for the same purpose (Gilks et al., 1995). Recent papers

on more traditional probabilistic methods include Su et al. (2011); Kropko et al.

(2014). In terms of deep learning techniques, we point the reader towards Section

2.4 where examples of generative models for data imputation are provided.

Chapter 2. Background 39

2.3.3.2 Specific to Image Data

For image data, several tasks are related to data repair. Two of the most relevant

are image denoising and image inpainting. The SOTA in these two tasks is

currently dominated by deep learning models. Often the recently proposed

machine learning models can tackle both of these tasks, but often rely on large

amounts of labelled data or training on clean data. A good example is the recent

model for image denoising in Wan et al. (2020), which relies on the availability

of a large curated dataset. One way to bypass the above lack of data is to make

strong assumptions about the type of noise to repair. For instance, assuming the

noise is Poisson-Gaussian distributed (Khademi et al., 2021) (medical imaging).

Another example is to assume the image noise is mostly limited to high frequency

signals (Bao et al., 2013), and thus a low-pass filter is applied. However, the

proposed models in this thesis aim to be broadly applicable, and thus do not make

this specific type of assumptions about noise.

The task of image denoising is to remove the noise from an image at test time,

and generate a new image with the correct pixel values. This new image should

conform to what is considered normal or clean data. A survey about the topic is

Tian et al. (2020).

The task of image inpaiting is similar in spirit with that of data imputation for

tabular data. Here the missingness mask is usually known apriori, and the task

is to impute missing pixels such that the overall generated image conforms with

clean data. A survey about the topic is Jam et al. (2021).

2.3.3.3 Regularization and Data-Reweighting

These types of models either use strong regularization of model parameters, or use

data reweighting for the training dataset. In general these tend to be unsupervised

generative models, and most of the current ones are deep learning models. The

data-reweighting methods usually control the importance of an instance towards

the training loss or likelihood. In other words, potential outliers should be

downweighted in the training loss. Both regularization and data reweighting try

to mitigate the effects of corruption in the learning procedure, and thus avoid

overfitting to outliers. A good example of regularization is the `2 norm penalty

(Golub et al., 1999) for model parameters. For data-reweighting, a classic example

Chapter 2. Background 40

is the RPCA Candès et al. (2011); Zhao et al. (2014) family of models. A more

detailed discussion about these models is seen in Section 2.5.2, although specific

for AE / VAE models. The novel model proposed in Chapter 3 can be seen as

part of this family of models.

A related method is to use the RANSAC (Fischler & Bolles, 1981) algorithm

to continuously isolate outliers, and then retrain the underlying model. Every

iteration outlier detection is performed, and outliers removed from the training

dataset. Therefore, with successive iterations of RANSAC, the underlying model

would only learn from inliers. Hence, in the end model parameters are unaffected

by outliers or corruption. This type of approach can be very expensive computa-

tionally, as the model needs to be retrained several times for the dataset. This is

particularly problematic for deep generative models, which often take a long time

to train. Therefore, this has not been explored that much in deep learning.

2.3.3.4 Data Sanitization

A different option that has been explored is to just remove the outlier instance

from the dataset. Like in the database systems research (see Section 2.3.2), in

some cases this is acceptable or even the right decision. In literature this is often

called data sanitization. For instance, outliers caused by adversarial attacks often

need to be removed from the training data. Otherwise the model will overfit to

the corruption, and thus make it vulnerable to malicious intent. This technique

has also been used to remove instances affected by systematic errors. RANSAC

(Fischler & Bolles, 1981) can be seen as an example of this technique if no repairs

are generated by the final model. Instead, the outliers are removed and the process

terminated. Other model examples which are far superior in terms of robustness

to outliers cane be found in Koh et al. (2018); Diakonikolas et al. (2018); Liu et al.

(2020).

2.3.3.5 Conditional Generative Models

If labels for inliers and outliers are available, then conditional deep generative

models can be used for data repair. Usually, labelled data is limited and thus

semi-supervised models are more realistic than supervised ones. A discussion

on semi-supervised generative models can be found here Ouali et al. (2020).

After a conditional model has been trained, the repair process would reconstruct

Chapter 2. Background 41

the outlier without any corruption patterns by using label information. This is

done by flipping the label value to inlier. In Section 2.5.3 we discuss in detail

conditional VAEs, which are a type of conditional deep generative models, for

both semi-supervised and supervised settings.

2.3.3.6 Latent Disentanglement Models and ICA

Generative models like VAEs learn a latent representation of the data. In theory, in

latent space the attributes of an instance can be manipulated before reconstruction

by a decoder (generator). This would allow to repair an outlier instance by

removing any corruption patterns. This is difficult to do without knowing which

latent variables to manipulate and what their effect on the reconstruction is.

Disentanglement models learn a latent space where each variable, or set of variables,

is assigned a particular attribute of the data. To guarantee that latent variables

(or set of) model different data attributes these models often try to guarantee

that the variables are statistically independent. Therefore, it should be possible

to separate in the latent space of a VAE the variables controlling if corruption

is present and its type, and the variables controlling the attributes of clean data

(inliers). Hence, the repair process through latent variable manipulation can be

more easily obtained. In Section 2.5.4 we discuss these models in more detail, and

present a SOTA baseline to be used in this thesis. The novel model proposed in

Chapter 4 can be seen as part of this family of models.

Classically, in signal processing or time-series data these models have been used

to isolate and remove noise sources. However, this usually requires a lot of labelled

data or prior knowledge about the clean data or the corruption process. The ICA

(Independent Component Analysis) (Hyvarinen & Morioka, 2016) model has been

used for these tasks in the past.

2.4 Deep Generative Models

Before moving to specify in more detail VAE models for our task, we briefly

discuss different types of deep generative models. We remark that most of the

research about deep generative models has been for image, text and speech

data. Still, relatively few works have focused on mixed-type tabular datasets.

Note that mixed-type datasets are those where different feature types co-exist,

Chapter 2. Background 42

e.g. continuous and categorical tabular dataset (from csv files, excel sheets, or

relational databases).

Deep generative models are neural networks with many hidden layers trained to

approximate complicated, high-dimensional data distributions. One type of deep

generative models are the variational autoencoders (VAEs). The choice to use and

develop upon VAEs (Kingma & Welling, 2014) for our task (i.e. outlier detection

and data repair) is due to these being ubiquitous, generally easy to understand and

to implement. Thus as a first effort into robust generative models for automatic

data repair it makes sense to start simple, but also to provide an extension

onto an already popular and extensively deployed model. In fact, recently VAEs

have proved competitive against more sophisticated generative models, producing

diverse high quality samples and reconstructions. Some examples of these state-

of-the-art (SOTA) VAE models are VQVAE-2 (Razavi et al., 2019b), VDVAE

(Child, 2020), VQGAN (Esser et al., 2021), MUSE (Chang et al., 2023).

Broadly, one can identify five types of deep generative models:

1. Variational Autoencoders (VAE) (Kingma & Welling, 2014, 2019);

generally these models offer good sample diversity and sample speed. The

sample quality in general tends to be inferior to other SOTA generative

models, but recent VAE models are quite competitive. Quality tends to be

related to how good the samples are as it relates to true data samples; usually

measured by FID scores or by human evaluation of the samples. Diversity

tends to be measured by the negative log-likelihood (NLL), and is a measure

of how different are the samples produced by the model. Speed is related

to the time / compute complexity of synthesizing a sample. The VAE

uses amortized variational inference, where neural encoders parameterize

variational distributions, in conjunction with neural decoders that express

generative model of the VAE. Training is generally quite stable, however

posterior collapse (latent space) (Dai et al., 2020) may be a problem, re-

stricting sample diversity and representation learning. This tends to happen

especially with powerful decoders, e.g. autoregressive PixelCNN (Van den

Oord et al., 2016). That said it can be avoided by using some strategies, e.g.

KL annealing (Fu et al., 2019) or others like Razavi et al. (2019a); Mathieu

et al. (2019); Alemi et al. (2018). One common criticism about standard

VAEs is that their samples can be blurry, often lacking sharpness or detail.

Chapter 2. Background 43

Although this can be vastly mitigated in modern architectures, the recent

work in (Bredell et al., 2022) proposes a more universal approach. The

authors improve sample quality of VAEs by incorporating a de-blurring con-

volution operation in the decoder output – i.e. in the covariance of decoder

distribution. VAEs are still the subject of many research papers, and some

recent SOTA models are quite popular. VQVAE-2 (Razavi et al., 2019b) uses

stacked discrete latent space codebooks (like K-means) that are optimized

during training, which leads to better diversity with quite good sample

quality at test time (though post-processing is needed). The sampling speed

tends to be slower as compared to other VAE or GAN models. VDVAE

(Child, 2020) uses a sparse Transformer (Vaswani et al., 2017) in the decoder

to sequentially combine latent embeddings producing high quality samples.

Note that the VDVAE is a type of Hierarchical VAE (Zhao et al., 2017b),

where each layer of the encoder / decoder is modelled as a latent variable in

a top-down inference architecture. Unlike VQVAE-2 the latent bottleneck is

not discrete, and thus the sampling is quite fast. It performs as well as other

SOTA autoregressive models. More recently, Efficient VDVAE (Hazami

et al., 2022) was proposed registering a speed up in training convergence of

about 2.6 fold with improved stability, and saving up to 20 times in memory

load. VQGAN (Esser et al., 2021) is better than the aforementioned models,

combining VQVAE with Transformer neural architectures, plus it uses a

discriminator like GANs (realism constraint) to improve on sample quality.

The sample quality is as good as the model BigGAN (Brock et al., 2018),

one of the best GAN models. Recently MUSE (Chang et al., 2023) has been

proposed for the task of text-to-image generation. This model leverages two

key concepts: i) masked image modelling with Transformers; ii) VQGAN

encoder and decoder architectures are used for both semantic tokenization

and high-resolution image generation. MUSE registers performance very

close to SOTA performance in terms of image generation. Further, MUSE

appears to be significantly faster at sampling than diffusion models (e.g.

Latent Diffusion Models, Imagen) and traditional autoregressive models.

2. Generative Adversarial Networks (GAN) (Goodfellow et al., 2014;

Jabbar et al., 2022); generally these offer great sample quality with high

sample speed, but poor sample diversity. In fact, training is complex and

Chapter 2. Background 44

inherently unstable and can be computationally expensive (Brock et al.,

2018). GANs tend to be very flexible models, as no explicit likelihood is

needed. The model defines a generator network that produces synthetic

samples; in a way that it fools a discriminator network trying to find which

samples are from the dataset, and which are synthetic. Accordingly, this

translates to a min-max optimization problem that defines an adversarial

training procedure. This adversarial procedure is the source of high quality

samples, but also training instability. Further, many times it leads to mode

collapse or lack of convergence (in training). The issue of mode collapse

in GANs translates to lack of sample diversity. Examples of models with

overall great sample quality can be seen in StyleGAN v2 (Choi et al., 2020),

StyleGAN v3 (Karras et al., 2021), InfinityGAN (Lin et al., 2021), and

BigGAN (Brock et al., 2018). Yet typically in these models the sample

diversity is not on par with SOTA VAE models – e.g. see (Esser et al., 2021).

The authors in (Karras et al., 2020) develop a technique termed adaptive

discriminator augmentation that stabilizes training of GANs in limited data

regimes, whilst still offering great sample quality. This approach can be

applied to both BigGAN and StyleGAN models. More recently, StyleGAN-

XL (Sauer et al., 2022) sets a new SOTA for GANs by improving the

modelling, but mostly by improving the training strategy for StyleGANs.

Showcasing great performance in high-resolution image synthesis for large

diverse datasets.

3. Autoregressive Models (AutoReg) (Van Oord et al., 2016; Germain

et al., 2015); generally these models offer good sample quality and diversity

(NLL), though sampling speed is quite slow. These models are characterized

by sequentially generating each pixel (feature) when producing a sample. For

each feature, the model conditions on the ones already generated. Moreover,

the joint distribution for (exact) likelihood-based training is given by the

product of conditional probability distributions (for each feature), as in

Germain et al. (2015); Uria et al. (2016); Papamakarios et al. (2017) these

can be parametrized by neural networks. Nowadays, many other models

incorporate AutoReg architectures into their neural architectures or even

VAE priors, e.g. based on PixelCNN (Van den Oord et al., 2016). On a

related note, Transformers have since started to be used (see VQGAN (Esser

Chapter 2. Background 45

et al., 2021)), which allow for non-sequential processing of features (pixels).

This can make training more parallelizable and allow for better modelling

of long dependencies between features. Transformers rely on multi-head

self-attention layers, which in practice provide increased performance on

sample diversity and improved speed, see Sparse Transformer with DistAug

(Jun et al., 2020) and MaskGIT Chang et al. (2022). The former model

(Jun et al., 2020) takes a Sparse Transformer (Child et al., 2019) and

applies transformation functions for more aggressive (in its distortion) data

augmentation, registering quite good FID scores. Note that the Sparse

Transformer was especially designed for long sequence generation. The

more recent MaskGIT model is better at image generation than Sparse

Transformer with DistAug. MaskGIT learns to predict randomly masked

tokens by attending to tokens in all directions. At inference time, MaskGIT

begins with generating all tokens of an image simultaneously, and then

refines the image iteratively from the previous image generation. This type

of masked image modelling has been used in other model types, like the

SOTA VAE model MUSE (Chang et al., 2023) already discussed.

4. Energy-based Models (EBM) (LeCun et al., 2006; Song & Kingma, 2021);

generally these offer good sampling quality and diversity, with slow sampling

speed. The model training is stable compared to VAEs and especially GANs,

but computationally expensive. EBMs are typically trained via maximum

likelihood estimation (MLE), through gradient-based optimization. The

model is defined by the unnormalized probability distribution (energy),

which provides significant model flexibility compared to VAEs. However,

it also means the partition function needs to be approximated through

sampling, or at least a few fantasy samples need to be synthesized from

the energy. This makes training computationally expensive and difficult to

scale, as sampling relies on Markov Chain Monte-Carlo (MCMC), and chain

mixing issues become a concern. Contrastive Divergence (Carreira-Perpinan

& Hinton, 2005) tries to mitigate this. Some of these issues seem to have

been improved dramatically recently by using Langevin dynamics MCMC

(Du & Mordatch, 2019; Du et al., 2020), especially in high dimensional

datasets (e.g. images). Recently VAEBM (Xiao et al., 2020) composes a

hierarchical VAE with an EBM model for image generation. The EBM

Chapter 2. Background 46

modelling part helps to exclude non-data like regions (realism constraint),

and helps refine image samples for increased quality. On the other hand,

the VAE model part helps speed up the MCMC updates by reparametrizing

them in a pre-trained VAE latent space. Other authors have proposed score

matching training methodologies for EBMs (Song & Kingma, 2021), further

improving on all aspects (quality, speed and diversity).

5. Normalizing Flows (NF) (Papamakarios et al., 2021; Rezende & Mo-

hamed, 2015); generally these offer good sample quality and diversity, but

sampling speed is slow. Further, usually training is not very scalable to

high dimensional datasets, e.g. high resolution images. Flow-based models

restrict their architectures to invertible neural networks, i.e. have a reversible

transform. This is necessary so as to apply the change of variable trick to

the data probability distribution in a computationally tractable fashion – i.e.

determinant of Jacobian being constant or cheaply computed. In turn, this

allows for exact MLE training via gradient-descent methods, by using the

probability distribution of the latent variables in the log-likelihood. Some

recent SOTA flow-based models can be found in Ho et al. (2019); Kingma

& Dhariwal (2018); Durkan et al. (2019); Chen et al. (2019); Mahajan et al.

(2020). However, given current advancements in other generative model

families, and how computationally expensive flow-based models still are, the

development has been slower for the image generation task.

6. Diffusion or Score-based Models (DiffM) (Ho et al., 2020; Song

& Ermon, 2019); generally these offer the best sample quality and sample

diversity, though sampling speed is slower than GANs and VAEs. Although,

recent works have significantly improved sampling and training speed of

diffusion models. Recently, these models have become a topic of interest, and

are an active research topic. Diffusion models are inspired by non-equilibrium

thermodynamics, as they define a Markov chain of diffusion steps that slowly

add random noise to data. The reverse of this diffusion (probabilistic)

process, which is learnt by a neural network (decoder), synthesizes any

desired samples from noise (latent space). The latent space unlike VAEs has

the same dimensionality as the original data. Thus it is not an ideal model for

representation learning. Recently, a connection between diffusion models and

EBMs trained via score matching has been made in (Song & Kingma, 2021;

Chapter 2. Background 47

Song & Ermon, 2019). So these can also be called score-based models. Using

score matching for inference greatly improves speed of training and sampling.

The model DDPM v2 (Nichol & Dhariwal, 2021) represented a big jump

in performance in terms of sample quality and diversity. Though sampling

was still quite slow compared to models like StyleGAN. But still faster than

typical EBMs or AutoReg models. More recently, Latent Diffusion Models

(LDMs) (Rombach et al., 2022) proposed using a pre-trained autoencoder

to perform the diffusion process in latent space, thus improving on sample

quality and speed (training and inference). Alternatively, another option

is to use Subspace Diffusion (Jing et al., 2022) models for training and

sampling speed-up. LDMs are currently the best SOTA model for sample

quality and diversity for image generation and related tasks (e.g. text-to-

image). A popular version of LDMs for the text-to-image task is Stable

Diffusion. However, sampling and training speed is still quite expensive

compared to models like SOTA VAEs (e.g. MUSE (Chang et al., 2023)).

Still, there is a lot of work trying to speed up sampling and training in

LDM type models. For instance, Distilled Stable Diffusion (Meng et al.,

2022) presents a 20 times speed-up compared to regular Stable Diffusion in

sampling time, and is able to generate quality samples in 2 to 4 denoising

steps.

Essentially, one can rearrange the above models into two classes:

1. Likelihood-based Generative Models: VAE, AutoReg, NF, EBM,

DiffM. These models learn the probability distribution function directly

through (approximate) maximum likelihood. These include autoregressive

models and normalizing flows that allow for exact evaluation and maximiza-

tion of the likelihood function. It also includes VAEs that evaluate and

maximize a surrogate of the likelihood function, i.e. a lower-bound of the

log-likelihood.

2. Implicit Generative Models: GAN. These models are those where the

probability distribution is implicitly expressed by a model of its sampling

process. In this case, the most well-known example are models of the

GAN family, where samples from the data distribution are constructed by

transforming random Gaussian noise via a neural network (generator). A

discriminator network is used to help in training the model.

Chapter 2. Background 48

2.4.1 Deep Generative Models for Mixed-Type Tabular Data

Although most generative model types above can be adapted for mixed-type

tabular data; in reality, few papers have explored this type of structured dataset

thoroughly. Most models focus on unstructured datasets like image, speech, or

natural language data. Here we showcase some relevant generative models specific

for (mixed-type) tabular data.

Some papers have focused on the task of tabular data synthesis, where it seems

GAN architectures have been most successful. One of the earliest works was Xu

et al. (2019) proposing two models TVAE and CTGAN, where the former is a

VAE and the latter a GAN. The authors found that CTGAN outperformed all

other alternatives in terms of sample quality; including TVAE and traditional

(i.e. non-deep learning) Bayesian models. The same research group has recently

developed a framework to compare performance generative models for tabular

data synthesis (see SDGym repository 2).

From the database community Table-GAN (Park et al., 2018) was proposed for

tabular data synthesis with privacy concerns in mind. The goal is to generate

tabular data samples that does not leak sensitive or private information from

individuals, i.e. differential privacy. PATE-GAN (Jordon et al., 2018) was also

proposed as a GAN for tabular data synthesis with differential privacy in mind.

Similarly, CTAB-GAN (Zhao et al., 2021) proposes a conditional GAN that

improves on certain typical problems in tabular datasets, e.g. data imbalances

and long tail issues. Privacy concerns were also evaluated in the paper. DTGAN

(Kunar et al., 2021) improves upon CTAB-GAN by proposing a conditional

Wasserstein GAN with superior data synthesis (sample quality) whilst enforcing

differential privacy constraints.

From another perspective, some papers have focused on devising generative models

for data imputation in mixed-type tabular datasets. These works are obviously

more related to our task of data repair. However, these models have the enormous

advantage of training on clean datasets, which are without corruption. Further, the

missing entries (or cells) are properly identified before training happens. A good

example of an earlier VAE model for imputation is HI-VAE (Nazabal et al., 2020),

where the pattern of missingness is assumed to be at random. Another perspective

2https://github.com/sdv-dev/SDGym

https://github.com/sdv-dev/SDGym

Chapter 2. Background 49

is the model GAIN (Yoon et al., 2018), which proposes a GAN for tabular data

imputation when cell values are missing at random. The model MIWAE (Mattei

& Frellsen, 2019) proposes a VAE that improves upon HI-VAE by using tighter

lower-bound to the data likelihood. This is inspired by the importance-weighted

autoencoder (IWAE) estimator in Burda et al. (2016). The result is superior

data imputation (or sample) quality. Recently Not-MIWAE (Ipsen et al., 2020)

improves on the previous work by assuming that cell missingness patterns may

not be at random, and that there is benefit in overtly modelling the missingness

pattern as well. GINA (Ma & Zhang, 2021) introduces a VAE model that improves

on Not-MIWAE for the same task, also learning the missingness pattern. However,

it provides a data imputation process that is less biased (due to missingness

pattern); and finally provides guarantees on the identifiability of the true data

generating process.

2.5 Deep Generative Modelling with Variational Au-

toencoders

Here we present in detail a class of deep generative models that have become

ubiquitous in machine learning, and are powerful enough for our task of automatic

outlier detection (OD) and data repair. This class of models is the variational

autoencoder (VAE) (Kingma & Welling, 2014) and its subvariants. A good

overview of representation learning using deep VAEs is found in Tschannen et al.

(2018), and a more recent survey in Kingma & Welling (2019). Once more, all the

models and anomaly scores as presented here only apply to detection and repair

of point outliers (see Section 2.2.1). Besides the standard VAE, we introduce

unsupervised and supervised / semi-supervised versions relevant to our task. We

briefly discuss latent space disentanglement VAEs (Locatello et al., 2019a) and

their applicability to this task, and present a semi-supervised state-of-the-art

(SOTA) model. Although not quite a VAE, we also discuss an unsupervised deep

autoencoder (AE) that extends the robust PCA model (Candès et al., 2011), i.e.

robust principal component analysis (RPCA). In fact, RPCA has been used in

literature for both outlier detection and data repair (Zhao et al., 2014; Wang et al.,

2017b), where the training data is corrupted. Further, the purpose of RPCA is to

provide a PCA model that has reduced sensitivity to outliers in the training set,

Chapter 2. Background 50

i.e. a model robust to dataset corruption.

Likewise, the novel models developed in this thesis, as well as several explored

baselines, have the objective of providing a model robust to corrupted data. However,

not all baselines will be able to perform outlier detection and repair, sometimes

only detection is possible. Nonetheless, all the AE models in this section will

be able to do both detection and repair, but not all will be robust to corrupted

data (e.g. standard VAE). For the models here that are robust, there are two

major ways to accomplish this: i) using strong enough regularization or data

reweighting in the model, such that it focuses on modelling inlier data and mostly

ignores outliers – e.g. RPCA or Akrami et al. (2019a) or Chapter 3 (RVAE); ii)

using supervision / semi-supervision by labelling inliers and outliers, such that the

model learns to distinguish them and models the inlier data well – e.g. Kingma &

Welling (2014); Joy et al. (2020) or Chapter 4 (CLSVAE). Typically, option i) is

fine for random error corruption in reasonable amounts, whilst ii) is preferred

when systematic errors are present. This is because systematic errors exhibit

specific patterns that are repeated across the dataset, and thus are easier to overfit

to by unsupervised models. Though models using supervision are not necessarily

immune.

There is a another option, specially if the amount of outliers is low, which is to

apply a RANSAC (Fischler & Bolles, 1981) type algorithm to a VAE. However, like

we discussed in Section 2.3.3, methodologies like RANSAC can be computationally

expensive due to model retraining; but also standard deep generative models can

easily overfit to outliers, which makes RANSAC fail due to poor outlier detection

by the model. Therefore, a RANSAC approach is generally not explored.

For the models in this section we use the notation in Section 2.1. The problem

definition for outlier detection is found in Section 2.2.2, and the one for data

repair is in Section 2.3.1. Once more, we omit the subscript n for convenience.

2.5.1 Standard Variational Autoencoders (VAEs)

A common approach to unsupervised outlier detection is to build a generative

model p(x) that models the distribution of clean data (inliers only). A powerful

class of deep generative models are variational autoencoders (VAEs) (Kingma &

Chapter 2. Background 51

Welling, 2014), which model p(x) as

p(x) =

∫
dz p(z)pθ(x|z), (2.4)

where pθ(x|z) =
∏D

d=1 pθ(xd|z) and pθ(xd|z) is the conditional likelihood of feature

d, z ∈ RK is the latent representation of instance x, and p(z) = N (z|0, I) is an

isotropic multivariate Gaussian prior.

To handle mixed-type data, e.g. tabular datasets, one can use a conditional

likelihood pθ(xd|z) that is different for each feature type. For real features

pθ(xd|z) = N (xd|md(z), σd), where each σd represents the standard deviation of

feature d and these are parameters learnt during model training. For categorical

features pθ(xd|z) = f(ad(z)), where ad(z) is an unnormalized vector of probabil-

ities for each category and f is the softmax function. All md(z) and ad(z) are

parametrized by feed-forward neural networks.

Otherwise, for image datasets, if the pixel values are continuous then usually we

can model these using pθ(x|z) = N (x|µθ(z), σ2
xI) where σx is a scalar parameter

that is learnt. If the pixels are categorical variables, then pixel values have a set

number of categories, e.g. a black-and-white image has two categories. In this

case each pixel d is modelled by pθ(xd|z) = f(ad(z)) as seen above.

Since exact inference for pθ(z|x) is generally intractable, a variational posterior

qφ(z|x) is used; in VAEs this is also known as the encoder. It is modelled by a

Gaussian distribution like so

qφ(z|x) = N (z|µφ(x),Σφ(x)), (2.5)

where µφ(x) and Σφ(x) are feed-forward neural networks, and Σφ(x) defines a

diagonal covariance matrix. VAEs are trained by maximizing the lower bound

on the marginal log-likelihood called the evidence lower bound (ELBO), given by

log p(x) ≥ Lθ,φ(x) = Eqφ(z|x)

[
pθ(x|z)p(z)

qφ(z|x)

]
, (2.6)

= Eqφ(z|x) [log pθ(x|z)]− DKL(qφ(z|x)||p(z)),

=
D∑
d=1

Eqφ(z|x) [log pθ(xd|z)]− DKL(qφ(z|x)||p(z)),

where the neural network parameters of the decoder θ and encoder φ are learnt

with a gradient-based optimizer (e.g. Adam (Kingma & Ba, 2014)). Accordingly,

Chapter 2. Background 52

the optimization problem defining model training is thus given by

min
θ, φ
− 1

N

∑
x∈X

Lθ,φ(x). (2.7)

In practice, it is common to use a modified version of the ELBO. This version

introduces a coefficient η that controls the contribution of the DKL term to the

ELBO loss. This is expressed as

Lθ,φ(x) =
D∑
d=1

Eqφ(z|x) [log pθ(xd|z)]− η DKL(qφ(z|x)||p(z)), (2.8)

where for η = 1 we obtain the standard ELBO in eq. (2.6). This version can be

used for latent space disentanglement like in β-VAE (Burgess et al., 2018), where

η is fixed to some value (different than 1) during training. Alternatively, it can be

used for annealing of the DKL term (Fu et al., 2019), where η changes its value

at each epoch during training, usually monotonically increasing. The annealing

procedure can help in preventing posterior collapse, and obtaining better latent

representations. It can sometimes also improve reconstruction quality.

Outlier Detection and Repair Process

A typical anomaly score for VAEs, see outlier detection task definition (section

2.2.2), is to use the reconstruction loss (negative log-likelihood) of the autoencoder

(Dehaene et al., 2019; An & Cho, 2015; Wang et al., 2017b). This is quite common

as an anomaly score for point outliers, which is the main focus of this thesis. As

such, we can define the anomaly score as

Aθ(x) = −
D∑
d

log pθ(xd|µφ(x)) x ∈ X , (2.9)

and thus the outlier set of instances is O =
{
x ∈ X | Aθ(x) ≥ γ

}
, where γ is given

by the user or tuned using a validation set. In the case of cell outlier detection a

different score needs to be used, following Section 2.2.2, for VAEs a cell anomaly

score using the reconstruction is defined as

Aθd(x) = − log pθ(xd|µφ(x)) x ∈ X , (2.10)

and so the cell (pixel) xd is considered an outlier if Aθd(x) ≥ γd, where γd is either

tuned via validation set or given by the user.

Chapter 2. Background 53

In terms of the repair task, following Section 2.2.2, we need to define the repair

transform that allows to clean the instance. Accordingly, for VAEs we can define

a point-wise estimate (MAP) from the VAE decoder as follows

x̂ = gθr(x) = arg max
x′

log pθ(x
′|µφ(x)) x ∈ O, (2.11)

Indeed, this is just the standard autoencoder reconstruction, where for continuous

features this corresponds to md(µφ(x)); and for categorical features this is just the

category with higher probability from f(ad(µφ(x))). Note that when repairing x

we can replace the entire instance by x̂; conversely, we can just repair the cells

in x that are outliers (i.e. xd where d ∈ C, in Section 2.2.2) replacing them by

the appropriate cells x̂d. If dealing with image datasets, then we can simplify the

repair transformation as follows

x̂ = µθ(µφ(x)) x ∈ O. (2.12)

2.5.1.1 Clarifying the Repair Process Formulation

Now we show how to obtain the formulation for the repair estimate in eq. (2.11).

This is an optional section for the reader, and some may think it is already clear

enough. That said, this is included here for the sake of being thorough. The VAE

is a probabilistic model, we can obtain a point-wise estimate for x̂ by following

eq. (2.3) in Section 2.3.1. Accordingly, we can specify log p(x′|x) from eq. (2.3)

and further simplify it as follows

log pθ(x
′|x) = logEpθ(z|x) [pθ(x

′|z)] ≥a Epθ(z|x) [log pθ(x
′|z)] (2.13)

≈b Eqφ(z|x) [log pθ(x
′|z)] ∝c log pθ(x

′|µφ(x))

where (a) uses the property of Jensen’s inequality; (b) is obtained by approximating

intractable distribution pθ(z|x) by the variational analogue qφ(z|x); and (c) uses

qφ(z|x) = δ{z = µφ(x)} for tractability. Note that δ{.} is the Dirac delta

distribution. Therefore, we can use the simplification from above to obtain the

repair estimate

x̂ = gθr(x) = arg max
x′

log pθ(x
′|x) ≈ arg max

x′
log pθ(x

′|µφ(x)), (2.14)

which is thus used in eq. (2.11) as the MAP estimate.

Chapter 2. Background 54

2.5.1.2 Standard VAE not Robust to Corrupt Data

One issue with the standard VAE model is that it has no means to downweigh

the importance of outlier instances on the training loss (in this case the negative

ELBO). The end result is that for a high capacity VAE, as seen by a bigger

amount of layers or units in the encoder / decoder neural networks, the model

will easily overfit to the outliers; and thus learning the errors as if they were clean

patterns of an inlier instance.

Therefore, since both inlier and outlier instances may end up having the same

reconstruction loss values, distinguishing them becomes harder, and thus outlier

detection is compromised. This is worsened when the outliers in the corrupted

dataset are more frequent, which means there is greater gain for the training loss

to learn the dirty patterns (errors) that constitute outliers.

Moreover, since the VAE has overfitted to the outliers, then its repair process is

also compromised. The VAE model, as reflected by the training loss, will assume

outliers are indeed part of the clean subset of the data. Accordingly, the decoder

(generator) will reconstruct back the outlier instance with very little changes. This

results in a poor quality repair, where the errors are still present.

2.5.1.3 Using the Likelihood as Anomaly Score

Generally, it is common to see the likelihood (or negative log-likelihood) of the

data being used as an anomaly score. Indeed, several models tackling the problem

of traditional outlier detection have used it successfully in the past (Ruff et al.,

2021). Nonetheless, it should be noted that using the likelihood as an anomaly

score has some known issues, mostly seen under unsupervised generative models.

One case is that of out-of-distribution outliers (see Section 2.2.1), where it can

present very poor performance. This issue with out-of-distribution outliers was

first properly shown in Nalisnick et al. (2018) for deep generative models that

rely on maximum likelihood estimation either exactly (e.g. Normalizing Flows,

Autoregressive) or through surrogates losses (e.g. VAEs). The authors believe

that this is a fundamental limitation of high-dimensional likelihoods as scores,

such as the ones used in some image datasets. The models tested seemed to be

focusing on low-level statistics rather than high-level semantics when trying to

score an outlier instance.

Chapter 2. Background 55

Another known issue is with outlier instances that cluster together (e.g. group

outliers, see Section 2.2.1). In Koh et al. (2018) the authors discuss how loss-based

(e.g. log-likelihood) can overfit to these outliers, as it would decrease the average

negative log-likelihood loss significantly during training. Hence, the anomaly score

produced could be compromised if proper steps are not taken, like regularization

or data sanitization techniques.

More recently, the authors in Lan & Dinh (2020) presented a theoretical framework

showcasing through the lens of reparameterization several issues with the likelihood

as an anomaly score. The paper focuses on several adversarial or failure cases for

this type of anomaly score. The authors remark that outlier detection can be an

ill-posed problem, and without proper inductive biases (e.g. supervision) some of

these failure modes can happen. Furthermore, the authors suggest that density

ratio scores that compare estimated inlier and outlier distributions to be more

robust, and can mitigate several of the issues. Interestingly, the unsupervised

RVAE model (see Chapter 3) proposes a ratio score like this with good performance

in cell outlier detection.

2.5.2 Unsupervised AEs: Regularization or Data Reweighting

In this section we present two unsupervised autoencoder (AE) models. Each one

represents an example of a type of unsupervised autoencoder that can be used in

our task. Three assumptions are typically made when using these models: inliers

are more frequent in the dataset relative to outliers, so regularization or data

reweighting focuses model learning on more general patterns like those of inliers;

corruption is random and has no specific pattern that repeats throughout the

dataset, i.e. random errors; if corruption has a specific repeatable pattern and

not random, i.e. systematic errors, then the amount of corruption in the dataset

should be low (few outliers).

Regularization

The first modelling option is to use an autoencoder where strong regularization is

applied to make the model robust against corruption. Generally regularization is

applied to the model parameters, e.g. neural network weights, which hopefully

forces the modelling efforts to focus on inlier data.

Chapter 2. Background 56

One of the most popular approaches is to apply weight decay to the autoencoder

neural networks, i.e. Tikhonov regularization (Golub et al., 1999) or `2 norm

penalty on the weights. We explore this option in more detail in Section 2.5.2.1

under the name VAE-L2. Several other interesting approaches to regularized

autoencoders exist in literature. Deterministic autoencoders (Ghosh et al., 2019)

generalize VAEs and introduce a penalty term based on `2 norm of the gradient

of the decoder w.r.t its input. Contractive autoencoders (Rifai et al., 2011),

use a penalty term based on `2 norm of the Jacobian (second order derivative)

of the encoder activations, tough one could apply it to the decoder instead as

well (see Ghosh et al. (2019)). Sparse (variational) autoencoders (Ng et al.,

2011) use a penalty term that enforces sparsity on the activations of the hidden

layers, either activating or deactivating hidden unit contributions. Denoising

(variational) autoencoders (Vincent et al., 2010) start by injecting corruption to

inlier instances, and thus generating synthetic outliers. Then during training

the autoencoder learns to reconstruct the inlier using the synthetic outlier. In

addition, injecting noise to the hidden layers in an autoencoder has also been

explored as means for regularization (Poole et al., 2014). Concrete (variational)

autoencoders (Abid et al., 2019) learn a discrete number of latent features (patterns)

that are combined by the decoder to reconstruct a data instance. As such, a

feature selector layer picks which latent features are used by the decoder. The

number of features is an hyperparameter, which can be small enough to enforce

regularization. In (Shu et al., 2018) regularization is applied to VAEs by restricting

the capacity of the encoder. One of the methods proposed therein is a weight-

normalization technique, defining a family of amortized inference functions for the

encoder. A theoretical connection between this proposal and denoising variational

autoencoders is provided. Nonetheless, a simpler way to restrict capacity in VAEs

is to just decrease the latent space dimensionality.

Data Reweighting

The second modelling option is to use data reweighting so as to isolate the

contribution of the outliers towards autoencoder training. These models typically

introduce robustness to corruption by modifying the loss function, or likelihood

of a generative model, such that outliers are down-weighted in importance (or

ignored) and inliers up-weighted. This means the model focuses on learning inlier

data, however models have different ways to down-weight or isolate outliers from

Chapter 2. Background 57

inlier modelling.

Generally, three options exist for data reweighting. One option is to use the

training loss to rank instances, and isolate the outliers by removing them from

subsequent model training epochs. Those instances with high training loss get

removed, usually a fraction of the entire dataset (hyperparameter). This then

avoids overfitting to outliers. The Transformer model (deep learning) in Liu et al.

(2020) is a good example, where outliers are removed from training early on in

the first few epochs. Theoretically a RANSAC (Fischler & Bolles, 1981) version

of a VAE would fit here, however as stated before, there are several practical

complications that have precluded this for deep autoencoders (see intro. of Section

2.5).

A second option is to use an adjacent model or variable to account for outlier

contributions, this means the principal model focuses on modelling inlier data.

For instance, RPCA type models that are autoencoders fit this type quite well.

The Deep RPCA (Zhou & Paffenroth, 2017) which defines an additional variable

to model corruption is a good example. We explore Deep RPCA in detail in

Section 2.5.2.2, since we use it as a baseline. The model we propose in Chapter 3

(RVAE) is an example of a VAE where its generative model has a specific model

component for outliers. Moreover, very recently a probabilistic version of Deep

RPCA was proposed in Aizenbud et al. (2021), the problem of outlier detection

was explored.

A third option is to use a training loss that is less sensitive to outliers. These

loss functions tend to attenuate or truncate contributions from large deviations

relative to where most of the data is located. Since we assume most of the data

are inliers, then these large deviations are relative to inlier data. In this context,

large deviations are caused by outliers. As a result, this type of loss helps the

model avoid overfitting to outliers during training. A relevant example is the

absolute error (MAE) loss that can attenuate larger deviations. MAE is used

instead of the problematic squared error (MSE) loss, which is typically used in

autoencoder reconstruction, since MSE loss is dominated value-wise by large

deviations (outliers) resulting in overfitting. A synthesis between these two error

losses (MSE and MAE) is given by the Huber loss (Huber, 1992) for robust

regression, which is effectively less sensitive to outliers.

Chapter 2. Background 58

Classically, in robust statistics (Huber, 2004), another way is to use heavy-tailed

distributions to attenuate outlier contributions – e.g. t-Student or Laplace or

Cauchy distributions. However, these can only be applied to continuous feature

datasets. Similar to MAE, heavy-tailed distributions when used in the negative

log-likelihood loss will make large devitions from inlier data have a lower loss value

than typical distributions (i.e. Gaussian). This means gradients (of the loss) are

less affected by outliers, and hence gradient-descent like training is less sensitive

to outliers. The exploration of heavy-tailed distributions to a wide variety of tasks

was explored in Barron (2019), where it was also applied to image synthesis using

VAEs.

In Akrami et al. (2019a) a VAE is proposed that uses a β-divergence measure to

define a reconstruction loss that attenuates outliers. The β-divergence Regli &

Silva (2018b) is a general class of robust divergences that can be used in variational

learning when outliers are present.

The model in Wang et al. (2017b) uses a VAE as a recurrent unit (like recurrent

neural network) to produce successive reconstructions, until the image is denoised.

It does so by iteratively decreasing the variance of the Gaussian likelihood. In

essence, outliers are represented by a Gaussian with a larger variance compared

to inliers, in a way similar to a heavy-tailed distribution.

2.5.2.1 VAE-L2

Here we present a regularized version of the standard unsupervised VAE (Kingma

& Welling, 2014) that uses the common `2 regularization (weight decay). Since

this is an unsupervised model, a practitioner applying this model cannot easily

provide any type of supervision to help the model distinguish between outliers

and inliers.

The main assumption is that by applying regularization this will have enough of

an effect to have the VAE mostly focus on modelling the inlier data. In fact, if

we assume a VAE with enough network capacity, then without regularization the

model will surely overfit to the errors present in the outliers from the training

set. To that end, the practitioner must increase the strength of the regularization

enough to constrain the weights of the autoencoder network weights.

For this model, this is done by increasing the weight of the regularization term,

Chapter 2. Background 59

which is given by the hyperparameter λ`2 . However, this hyperparameter has to

be tuned carefully: too little strength leads to the model still overfitting to the

errors; too much strength leads to a poor quality repair since detail might be lost

in the decoder reconstruction. This latter issue is due to constraining the neural

network weights to a point where the model collapses to mean behavior.

In this model, we regularize both the encoder and decoder weights via `2 regular-

ization term. This is a standard approach for VAEs using weight decay. Hence,

we can write the modified ELBO as

L(x) = Eqφ(z|x) [pθ(x|z)]− ηDKL (qφ(z|x)||p(z)) + λ`2
∑

wi∈WAE

||wi||2, (2.15)

where θ and φ are the parameters for the decoder and encoder respectively, and η

is used for DKL annealing. The wi are the parameters for a layer indexed by i,

belonging to the set of all VAE layer parameters WAE. We use this baseline in

Chapters 3 and 4.

Note that λ`2 is tuned by using a small validation set, where inliers and outlier

instances are known (i.e. y labels). Mostly, the user is looking towards optimizing

outlier detection performance (AVPR, Average-Precision), but can also take into

account repair metrics (SMSE, Standardized Mean Square Error). Getting a large

enough value for λ`2 is important, however too much regularization can degrade

the quality of the repair, which is why checking repair performance is important.

However ground-truth values x̃ are generally not available as part of the problem

setting (see Section 2.1), making this difficult to evaluate besides qualitatively. In

Chapters 3 and 4, the hyperparameter λ`2 was tuned using a small labelled set,

where repair performance was also taken into account. This was critical for good

performance.

Outlier Detection and Repair Process

In terms of the outlier detection process, the VAE-L2 model uses the same anomaly

scores as defined for the standard VAE (see Section 2.5.1). Specifically, the anomaly

scores defined in eq. (2.9) and eq. (2.10). In terms of the repair process, again

this model uses the same repair transformation as defined for the standard VAE

(see Section 2.5.1). The reader should see eq. (2.11) and eq. (2.12) for this.

Chapter 2. Background 60

2.5.2.2 Deep RPCA (or Robust Deep Autoencoder)

Now we explain in more detail the Deep RPCA (Zhou & Paffenroth, 2017), which

is a type of robust unsupervised deep AE. Here we use the name Deep RPCA as

it reflects its nature in terms of modelling, though its authors named it Robust

Deep Autoencoder. This model extends the RPCA (robust principal component

analysis) by incorporating an autoencoder for the modelling the clean data (inliers).

Otherwise, the core idea remains the same, which is to learn a combined model of

the underlying inlier (repair estimate) and an error contribution if the instance

is an outlier. In fact, RPCA models the error explicitly in order to downweigh

outlier instance contribution to the modelling of the repair estimate, i.e. data

reweighting. Deep RPCA is used in Chapter 3 (RVAE) as a baseline.

Classic RPCA (Candès et al., 2011) is a model that expresses the corrupted data

as the addition of a low-rank matrix representing the inlier data (repair term),

and a sparse matrix representing additive noise (error term). This however tends

to work best for continuous features, and not so much for categorical ones (see

Chapter 3). Accordingly, this is commonly written as x = x̂+ s where x ∈ X is

the potentially corrupt data instance; x̂ is the repair term, as we have seen before;

and s is the error term, which is a nearly zero vector if x is an inlier, or clearly

non-zero if an outlier. We see that RPCA uses s to isolate any error deviation

to the repair estimate x̂, and hence the repair estimate should be close to the

ground-truth inlier, i.e. x̂ ≈ x̃.

Like in many applications, it is useful to use a matricial notation for RPCA. The

instance vectors x ∈ X are stacked vertically to form a data matrix X. Similarly,

we have for error term s the matrix S, and for repair term x̂ the matrix X̂. Hence,

one can express the dataset modelling as X = X̂ + S. Using a non-zero vector for

s tends to be penalized in RPCA, which reflects the assumption that outliers are

less common than inliers. In essence, this corresponds to constraining S to be a

sparse matrix in terms of its rows. Moreover X̂ is modelled by a low-rank matrix,

like in standard PCA, which defines a lower dimension approximation of the data.

A common formulation (Candès et al., 2011) for the learning procedure (optimiza-

Chapter 2. Background 61

tion problem) for RPCA is

min
X̂, S

‖X̂‖∗ + λ‖S‖1 , (2.16)

s.t. ‖X− X̂− S‖2
F = 0

where ‖ . ‖1 is the `1 norm applied to the matrix element-wise, which is used to

control how sparse S is through λ; ‖ . ‖∗ is the nuclear norm, i.e. sum of the

singular values of the matrix, which is used to obtain a low-rank matrix much like

PCA data reconstruction; ‖ . ‖F is the Frobenius norm, which is used to enforce

the constraint that X = X̂ + S.

In Deep RPCA (Zhou & Paffenroth, 2017) the data repair matrix X̂ (or x)

is actually modelled via an autoencoder. Therefore, the learning procedure

(optimization problem) for Deep RPCA is now defined as

min
θ, φ, S, X̂

‖X̂−Dθ(Eφ(X̂))‖2 + λ R(S) , (2.17)

s.t. X− X̂− S = 0

where Eφ(.) and Dθ(.) are respectively the encoder and decoder neural networks

of the autoencoder, and φ and θ their parameters to be learnt; further, R(S) is

the regularization loss for the error term, which has its strength controlled by the

scalar hyperparameter λ. The value of λ controls the level of sparsity of matrix

S, which is tuned or user-defined according to the amount of corruption present

in the dataset. A large value for λ assumes the dataset X has a low amount of

corruption, i.e. few outliers, increasing the penalty incurred for using S. Likewise,

the reverse is true, a smaller value for λ should be used when large amounts of

corruption are present. For proper tuning of λ one should use a small labelled set

of outliers / inliers, which is used to gauge outlier detection performance.

The type of regularization loss R(S) used will dictate how outlier detection is

performed, and it should be adjusted to the type of corruption in the data. Firstly,

note that Snd is an element of matrix S, and Sn or s is a row of S. The set of all

rows of matrix S is defined as Sr = {s | s is a row of S}. The set of all elements

(entries) of matrix S is defined as Se = {Snd | Snd is an entry of S}. In Deep

RPCA two types of regularizers are used, the first is defined by

R(S) = ‖S‖1 =
N∑
n=1

D∑
d=1

|Snd| , (2.18)

Chapter 2. Background 62

which should be used when the corruption affecting cells (pixels) is distributed

with no particular pattern. This is also the standard regularizer used in classic

RPCA, see eq. (2.16). Another and more interesting regularizer is defined by

R(S) = ‖S‖2,1 =
N∑
n=1

√√√√ D∑
d=1

|Snd|2 , (2.19)

and its most useful when data corruption is due to the presence of outlier instances,

which means that dirty cells are concentrated in specific data instances. Further,

it assumes most instances are inliers, and thus made up of clean cells. This second

regularizer is more relevant for the problem setting we are trying to solve in this

thesis (see Section 2.1).

Training the Model

The optimization algorithm used to train Deep RPCA (Zhou & Paffenroth, 2017)

is an hybrid version of the original Alternating Direction Method of Multipliers

algorithm (ADMM). The classic ADMM (Boyd et al., 2011) is proximal optimiza-

tion method, ideally used when parts of the training loss are non-smooth functions

(e.g. `1 regularizer). It alternates between a typical gradient descent update to the

solution, and one or more updates using proximal operators. In the case of Deep

RPCA the proximal operators reflect the type of regularizers used, e.g. those in

eq. (2.18) and eq. (2.19). The gradient descent step updates the autoencoder

parameters φ and θ; and the proximal operators update X̂ and S.

Outlier Detection and Repair Process

In terms of outlier detection, one must define an anomaly score for cells and

another for instances. According to Zhou & Paffenroth (2017), and assuming

R(S) is given by 2.19, the cell anomaly score is

Aθd(s) = |Snd|2 Snd ∈ Se , (2.20)

where according to (Deep) RPCA formulation for each x we have an associated s.

On the other hand, for traditional outlier detection, we need an anomaly score for

instances. In Deep RPCA, assuming R(S) is given by 2.19, the instance or row

anomaly score is given by

Aθ(s) =

√√√√ D∑
d=1

|Snd|2 Sn ∈ Sr . (2.21)

Chapter 2. Background 63

The repair estimate x̂ is obtained directly by solving the optimization process

in eq. (2.17). Thus the optimization problem in eq. (2.17) is the repair process,

where x̂ is just a row of matrix X̂.

2.5.3 Supervised and Semi-supervised VAEs

In this section, VAE models that have at least some supervision are discussed.

The model can either be fully supervised, where all labels y ∈ Y are known for the

entire training set instances x ∈ X . Alternatively, only a smaller labelled set is

provided, i.e. a trusted set. In our problem setting, this trusted set is a subset of

the overall training set X . Our problem setting only allows for small labelled sets,

as to consider little user intervention, though supervised models can be useful as

baselines. An instance in this small trusted set is given as (x, y) ∈ Xl × Yl, where

inlier (y = 1) and outlier (y = 0) instances are labelled.

The main idea behind using these models is to exploit any labels y provided

for the dataset by the user. This supervision should help the model recognize

outliers, learn the patterns of the errors, and distinguish them from inlier instances.

This should allow not only for outlier detection, but also a repair process where

changing the label to y = 1 in the model should generate a repair estimate.

This is particularly relevant when outliers are difficult to detect, e.g. systematic

errors which unsupervised generative models can more easily overfit to. Using

semi-supervision improves outlier detection and data repair significantly in this

case, which is explored in Chapter 4. In fact, unsupervised robust generative

models still are at a clearly increased risk to overfitting to systematic errors. This

is because systematic errors result from nearly deterministic transformations (plus

potentially some noise) that occur repeatedly in data, unlike random errors.

As a reminder, the reader should take a look at the problem setting notation

in Section 2.1. Finally, some models may always need a small labelled set, e.g.

validation set, for hyperparameter tuning model.

2.5.3.1 CVAE (Supervised)

The CVAE (Conditional VAE) model (Kingma et al., 2014; Sohn et al., 2015)

simply concatenates the label y to both the input of the encoder network, and the

input of the decoder. This models needs the entire training set to be labelled, i.e.

Chapter 2. Background 64

(X ,Y). The CVAE provides a valuable supervised baseline, where the ground-truth

for y is observed for all instances x. However, this is typically not possible, as the

user would have to label or otherwise provide y for each x for a potentially large

dataset. This means this model is not very practical, i.e. little user intervention

in our problem setting. Once more, our problem setting (Section 2.1) only allows

for small trusted sets.

The ELBO for the CVAE model is given by

log p(x, y) ≥ L(x, y) = Eqφ(z|x,y) [pθ(x|z, y)]− ηDKL (qφ(z|x, y)||pσ(z)) , (2.22)

where θ and φ are the decoder and encoder parameters, and η can be used for

DKL annealing. Note that we have qφ(z|x, y) = N (z|µφ(x, y),Σφ(x, y)); and the

decoder has the same type of distribution as the standard VAE (Section 2.5.1),

apart from conditioning on y.

Furthermore, in a standard CVAE we usually have p(z) = N (z|0, I). However,

we found empirically that stronger regularization for the encoder was needed

for CVAE to do well in repair. Otherwise, it would often overfit to errors in

outliers (of the systematic type), see Chapter 4. Hence, we use a modified prior

pσ(z) = N (z|0, σ2I) where σ ∈ [0.1, 0.8], thus enforcing stronger regularization

(lower message capacity) on latent code z. Theoretically, one might think that

the encoder / decoder weights may scale in order to cancel out any change in

the variance σ. Thus, the optimum model after training on the ELBO loss would

always be the same. In practice, this is not the case. For further discussion into

this please see Section 4.6.3.1. Even though it is not standard, we also tried

modifying the encoder qφ(z|x) to not depend on y, but always ended up with

worse performance than qφ(z|x, y) in data repair.

Therefore, the training loss for the CVAE is defined by

min
θ, φ
− 1

N

∑
(x,y)∈X×Y

L(x, y) . (2.23)

Outlier Detection and Repair Process

In terms of outlier detection, once again an anomaly score based on the recon-

struction (negative log-likelihood) of CVAE is used. Hence, for traditional outlier

detection we have

Aθ(x) = −
D∑
d

log pθ(xd|µφ(x, y = 1), y = 1) x ∈ X , (2.24)

Chapter 2. Background 65

where the outlier set of instances is O =
{
x ∈ X | Aθ(x) ≥ γ

}
, where γ is given by

the user or tuned using a validation set. Again, note that y = 1 is the inlier label,

which is selected for this likelihood-based score. The idea here is that outliers

x should have low likelihood if one conditions the reconstruction distribution to

y = 1 (inliers). As a result, the anomaly score of an outlier should be high in that

case.

Similarly, we can define the anomaly score for cell outlier detection. For some

feature d in instance x the score for each cell (or pixel) is

Aθd(x) = − log pθ(xd|µφ(x, y = 1), y = 1) x ∈ X , (2.25)

and so the cell xd is considered an outlier if Aθd(x) ≥ γd, where γd is either tuned

via validation set or given by the user.

Now one must the define the repair process using this model. We follow the CVAE

attribute manipulation strategy from (Klys et al., 2018), and thus provide a repair

estimate for an outlier (y = 0). This will produce a point-wise estimate (MAP)

for x̂. Conceptually, we have the following steps: one encodes x using the original

label (y = 0); then one switches the label in the latent space (y = 1); finally one

used the decoder to generate the repair. In other words, the repair estimate is

given by

x̂ = gθr(x) = arg max
x′

log pθ(x
′ | µφ(x, y = 0), y = 1) x ∈ O , (2.26)

which can be simplified in the case of an image dataset with continuous features

as follows

x̂ = µθ(µφ(x, y = 0), y = 1) x ∈ O. (2.27)

2.5.3.2 M2 Model: Standard Semi-Supervised VAE

The classic version of the semi-supervised VAE (Kingma et al., 2014) assumes a

labelled subset of the training data is available. Hence in the training data we

have a trusted set Xl × Yl, and an unlabelled set Xu that tends to encompass the

vast majority of data instances. This model is often referred to as the M2 model,

since that is the original name from the authors. The M2 model shares several

characteristics with the CVAE, and can be seen as its semi-supervised version.

For this reason often CVAE will register the same or better performance than the

M2 model.

Chapter 2. Background 66

The ELBO of the semi-supervised VAE is given by two terms, which account for

the semi-supervised setting. The first term L(x) is the ELBO for the unlabelled

part of the data, corresponding to p(x) where x ∈ Xu. The second term L(x, y)

is the ELBO for the trusted set, corresponding to p(x, y) where (x, y) ∈ Xl × Yl.

The generative model for the semi-supervised VAE (M2 model, (Kingma et al.,

2014)) is pθ(x|z, y)p(z)p(y). Note that p(y) = Bernoulli(y|α) is just the prior

distribution of the labels, which defines a prior belief on how corrupt the training

dataset is. Specifically, α reflects the fraction of instances in the training set

believed to be inliers. For instance, an α close to 1 means that the dataset is

mostly without outliers. Further, just like in standard VAE we have p(z) =

N (z|0, I). The decoder pθ(x|z, y) has the same definition as in Section 2.5.1,

apart from being conditioned on y. The typical variational model used for this

VAE model is qφ(z|x, y)qφ(y|x), where qφ(z|x, y) = N (z|µφ(x, y),Σφ(x, y)) and

qφ(y|x) = Bernoulli(y|πφ(x)).

According to Kingma et al. (2014), the labelled term of the ELBO is

L(x, y) = Eqφ(z|x,y) [pθ(x|z, y)]− ηDKL (qφ(z|x, y)||p(z)) + η log p(y) , (2.28)

where once more note that θ and φ are decoder and encoder neural network

parameters. The unlabelled term of the ELBO is

L(x) =Eqφ(y|x)qφ(z|x,y) [pθ(x|z, y)] (2.29)

− ηEqφ(y|x) [DKL (qφ(z|x, y)||p(z))]− ηDKL (qφ(y|x)||p(y)) .

Combining the two terms the overall negative ELBO is obtained as follows

I φ, θ−ELBO = − 1

N

∑
x∈Xu

L(x) +
∑

(x,y)∈Xl×Yl

L(x, y)

 . (2.30)

However, if we look at the overall negative ELBO we notice that the variational

distribution qφ(y|x), also known as classifier, is not being encouraged to predict

the labels y given by the trusted set. Thus the overall negative ELBO should not

be used alone as a training loss.

As a result, in Kingma et al. (2014) an additional loss term to train the classifier

on the trusted set labels is proposed. This term is the cross-entropy loss between

the true labels y ∈ Yl and qφ(y|x). This loss term is defined as

I φCE = − 1

Nl

∑
(x,y)∈Xl×Yl

y log qφ(y = 1|x) + (1− y) log (1− qφ(y = 1|x)) . (2.31)

Chapter 2. Background 67

Therefore, combining all loss terms together for the training loss, we define the

optimization problem as

min
φ, θ

I φ, θ−ELBO + β I φCE , (2.32)

where the scalar hyperparameter β controls the amount of up-sampling or impor-

tance relative to the ELBO terms. In the case of quite small trusted sets, which

is the case for our problem setting, β tends to be moderately large.

Outlier Detection and Repair Process

The outlier detection anomaly scores defined for CVAE in Section 2.5.3.1 can be

used here as well. Specifically, we have the anomaly score for cells in eq. (2.25),

and the one for instances in eq. (2.24).

However, since a classifier qφ(y|x) is available we can use it to define an alternative

anomaly score for instance x. If the classifier is found to be calibrated and the

VAE training successful, then it should be strongly considered. In practice, if

available we found this type of score to be superior in performance to one based

on the decoder likelihood (e.g. like in eq. (2.24)). This type of score is defined

simply as

Aφ(x) = − log qφ(y = 1|x) x ∈ X , (2.33)

representing the negative log probability of the instance x being an inlier (y = 1).

Like previous anomaly scores, a higher value means instance x is more likely to be

an outlier. Again the set of outlier instances is given by O =
{
x ∈ X | Aφ(x) ≥ γ

}
.

Assuming the classifier is calibrated, we can use γ = − log(0.5) instead of tuning

it or having the user define it.

In terms of the data repair process, this is the same exact procedure as defined

for CVAE, in Section 2.5.3.1. Particularly, one should look at formulations in eq.

(2.26) or (2.27).

2.5.3.3 VAEGMM: Alternative to M2 Model (Sparse Semi-Supervised)

This formulation is based on Willetts et al. (2020), specifically the GM-DGM

(Gaussian Mixture Deep Generative Model) presented therein. The authors

focused on the problem of applying a semi-supervised VAE in severe cases of

sparse semi-supervision (e.g. some classes do not even have labels). The sparseness

Chapter 2. Background 68

refers to how small the labelled set is, just like in our problem setting with quite

small trusted sets. In sparse semi-supervision, this formulation is relevant since

posterior collapse of qφ(y|x) can occur for the original M2 model (Kingma et al.,

2014). This in turn leads to poor performance in classification and clustering tasks.

Hence, one can think of Willetts et al. (2020) as an improvement on M2 model for

the issue above. Below we present the version of GM-DGM from Willetts et al.

(2020) applied to our problem setting, which we refer to as VAEGMM. The name

VAEGMM reflects the nature of its modelling more explicitly.

Generative Model

The generative model is defined as

p(x, z, y) = pθ(x|z) pτ (z|y) pα(y), (2.34)

where

pα(y) = Bernoulli(y|α), (2.35)

pτ (z|y) = y N (z|0, σ2
y=1I) + (1− y) N (z|0, σ2

y=0I), (2.36)

and decoder pθ(x|z) is the same as in standard VAE (see Section 2.5.1). This model

defines a 2-component Gaussian Mixture Model w.r.t. z, and τ = {σy=1, σy=0}
and σy=1 < σy=0. A sensible range for τ is: σy=1 = [0.2, 1]; σy=1 = [2, 8]. This

prior defines a 2-component Richter distribution (Gales & Olsen, 1999a; Quinn

et al., 2008), expressing a type of heavy-tailed distribution on z. In the context of

robust statistics Huber (2004), this type of distribution can be used as a means to

robustify (regularize) Barron (2019) the parameters of a model to outliers. The

main idea here is that inliers z|y = 1 will be regularized more strongly compared

to outliers z|y = 0, as reflected by σy=1 < σy=0. In our experiments, we initially

tried learning the parameters of the Gaussian components for z, as suggested in

Willetts et al. (2020). However we obtained much better results by fixing their

parameters, i.e. mean vector and covariance matrix, particularly when it came

to outlier detection in small trusted sets. Like in CVAE, see Section 2.5.3.1, one

might think that changing the variances of the prior for z has limited or no impact.

Since the encoder / decoder weights may scale in order to cancel the changes in

σy=1 or σy=0. In practice, this is not the case, and we registered good performance

by scaling these. For further discussion into variance scaling (of z prior) and its

Chapter 2. Background 69

impact please see Section 4.6.3.1. Lastly, once again α reflects the initial belief on

the fraction of clean data.

Variational Model

The variational model uses the standard formulation provided in Willetts et al.

(2020), which is the same as in the original M2 model (Kingma et al., 2014).

Accordingly, the encoders

q(z, y|x) = qφ(z|x, y) qφ(y|x), (2.37)

where

qφ(y|x) = Bernoulli(y|πφ(x)), (2.38)

qφ(z|x, y) = N (z|µφ(x, y),Σφ(x, y)), (2.39)

such that πφ(x), µφ(x, y) and Σφ(x, y) are neural networks.

Training Loss

The ELBO (Evidence Lower Bound) for the unlabelled part of the dataset Xu is

L(x) =Eqφ(y|x)qφ(z|x,y) [log pθ(x|z)]− (2.40)

− ηEqφ(y|x) [DKL(qφ(z|x, y)||pτ (z|y))]− ηDKL(qφ(y|x)||pα(y)),

which can be rewritten in a different fashion as

L(x) = πφ(x)G(x, y = 1)+
(
1− πφ(x)

)
G(x, y = 0)−DKL(qφ(y|x)||pα(y)), (2.41)

where

G(x, y) = Eqφ(z|x,y) [log pθ(x|z)]− ηDKL(qφ(z|x, y)||pτ (z|y)), (2.42)

and πφ(x) = qφ(y = 1|x) is the probability a data instance is clean.

Accordingly, the ELBO for the labelled part of the dataset (trusted set) Xl × Yl

is as follows

log p(x, y) ≥ L(x, y) = G(x, y) + η log pα(y). (2.43)

Taking the above formulations for the ELBOs of the unlabelled and labelled

(trusted set) subsets, then these can be used to form the dataset ELBO. The

Chapter 2. Background 70

negative ELBO loss for the M2 model also applies here(see eq. (2.30)). Further,

like for M2 model we need to encourage qφ(y|x) to predict the labels of the trusted

set. Thus a cross-entropy loss like eq. (2.31) is needed. Lastly, putting it all

together the overall training loss is exactly the one for M2 model, as defined in eq.

(2.32).

Outlier Detection and Repair Process

After training the model, we can then proceed with the outlier detection and data

repair processes. Like before we need an anomaly score for cells and another for

instances. As usual, we can define likelihood-based scores using the decoder of

this VAE model. The anomaly score for a cell of instance x is defined by

Aθd(x) = − log pθ(xd | µφ(x, y = 1)) x ∈ X , (2.44)

whilst the anomaly score for the whole instance is

Aθ(x) = −
D∑
d

log pθ(xd | µφ(x, y = 1)) x ∈ X , (2.45)

where the set of outlier instances is O =
{
x ∈ X | Aθ(x) ≥ γ

}
, and cell xd from

x ∈ O is dirty if Aθd(x) ≥ γd. However, since this is a semi-supervised model we

have access to classifier qφ(y|x), which when used as a score tends to obtain better

detection performance. Therefore, the anomaly for the whole distance using the

classifier is

Aφ(x) = − log qφ(y = 1 | x) x ∈ X , (2.46)

just like in the case of the M2 model. Once more, assuming the classifier is well

calibrated we can use γ ≈ − log(0.5), instead of tuning it or manually setting it.

Moving on the repair process, we need to provide a point-wise estimate for the

repair. For this model, this simply means conditioning on y = 1 as we want to

generate a inlier like instance. As such, we generally have that

x̂ = gθr(x) = arg max
x′

log pθ(x
′ | µφ(x, y = 1)) x ∈ O , (2.47)

and for the case of images with continuous pixels we can just simplify to

x̂ = µθ(µφ(x, y = 1)) x ∈ O . (2.48)

Chapter 2. Background 71

2.5.4 Latent Space Disentanglement in VAEs

A class of VAE models that have garnered some attention in the last few years are

those that try to disentangle the latent space. The idea is that a latent variable,

or a set of them, will map to a particular attribute (or characteristic, or factor)

of the instance. Equally as important, these latent variables (or set of) should

be statistically independent, thus guaranteeing the modelling of different data

attributes. If this happens, then the VAE has its latent space disentangled, or

has a disentangled representation. A good overview of disentanglement methods

in the context of VAEs is found in Locatello et al. (2019a) and Tschannen et al.

(2018), though more recent surveys may exist. In Locatello et al. (2019b) the

authors give a complementary overview for semi-supervised disentangled VAEs.

What is a Disentangled Representation?

The essential task of disentanglement (in VAEs) is to learn statistically independent

non-linear latent features (i.e. variables) that together completely describe the

data generation process. In practice, it is also common to relax the independence

aspect to cover sets or groups of independent latent variables, instead of just

individual variables.

In our context, an instance is composed by several attributes, where each attribute

can result in different feature (or pixel) values depending on its latent label. For

instance, consider an image dataset of human faces, an instance is made of several

attributes like eyes, mustache, nose type, hair, etc. Each attribute may have

different latent labels, e.g. hair may have the labels [blonde, brunette, black]; or

mustache may have the labels [yes, no]. One can relax this concept and allow the

latent label to be continuous instead of discrete, allowing for much more detailed

control of the image attribute. Note that an attribute is also known as factor or

characteristic in literature.

Modelling the attributes through specific latent variables allows the user to have

detailed control of the generative process, or reconstruction process. Because the

latent variables are disentangled, this means a change on a particular attribute

should not change other attributes when generating samples (or reconstruction),

if we assume other latent variables retain their values. In our example above,

this means we can modify the hair label changing a specific latent variable value

Chapter 2. Background 72

without modifying other attribute labels like mustache or eyes. Once more, this

is due to the property of statistical independence between latent variables, which

disentanglement models in VAEs try to guarantee (Lopez et al., 2018; Khemakhem

et al., 2020).

Relevance to Data Repair

Theoretically, for the problem of data repair, a VAE with a disentangled represen-

tation would model attributes related to errors in a specific set of latent variables.

Therefore, after encoding the outlier instance into latent space, the values of

latent variables related to errors can be modified such that upon reconstruction it

produces a repair. This means that error attributes have been set to be disabled

or off, by choosing appropriate values for those latent variables. Further, all other

attributes not related to the presence of errors are maintained, and so the instance

is reconstructed without errors (repair). Moreover, by checking which values are

in the error related latent variables after encoding, a model can potentially classify

the instance as an outlier or inlier. In other words, perform outlier detection.

Generally, this latent space disentanglement perspective about outlier detection

and data repair has not been explored in literature. In Chapter 4 we explore this

topic in depth, and propose our own solution (Clean Subspace VAE, CLSVAE).

Specifically, we show the effectiveness of our solution on dataset corruption by

systematic errors. This makes sense since systematic errors have specific repeatable

patterns, which should theoretically be encoded well in a set of latent variables.

Models from Literature

According to Bengio et al. (2013); Higgins et al. (2016) disentanglement is an

important part of representation learning, which can be useful for downstream tasks

– e.g. regression, classification, clustering. In Locatello et al. (2019a) the authors

present theoretical results that put into question the abilities of existing methods

to actually disentangle the latent space successfully. However, counterarguments

to these theoretical results have also appeared in literature, such as in Mathieu

et al. (2019) and the recent works on identifiable deep generative models (Hälvä

et al., 2021; Khemakhem et al., 2020; Moran et al., 2022). The authors in Locatello

et al. (2019a) argue that one of the main practical objectives of unsupervised

VAE disentanglement should be interpretability and fairness. Further, the authors

Chapter 2. Background 73

suggest that inductive biases and labelled data (e.g. semi-supervision) play an

important role in maximizing the usefulness of disentanglement. The authors in

Hälvä et al. (2021); Khemakhem et al. (2020) also suggest that inductive biases or

labelled data are often necessary if we are to obtain an indentifiable model – i.e.

able to disentangle and obtain the true latent factors of the generative process.

Moreover, in Moran et al. (2022) the concepts of anchor features and sparsity

used jointly are seen as sufficient to guarantee model identifiability.

Most of the earlier VAE disentanglement models focused on unsupervised ap-

proaches. The β-VAE (Higgins et al., 2016) was one of the first models, where

the coefficient β controls weight of the DKL term relative to the reconstruction

term. The idea is that β as an hyperparameter can adjust VAE disentanglement,

specifically for β ≥ 1. The work in Burgess et al. (2018) provides further study

of β-VAE within an information bottleneck framework. It explains the tradeoff

between reconstruction quality and a disentangled representation, and the role

of β in adjusting it. It proposes a way to anneal β in a way that progressively

increases the bottleneck capacity so that the encoder focuses on learning one

attribute at a time. A generalization of β-VAE is proposed in Mathieu et al.

(2019), where the aim is to make disentanglement more principled and study the

impact of hyperparameters.

Nonetheless, many of the unsupervised models have focused on augmenting the

ELBO of the VAE (see eq. 2.6) with regularizers encouraging disentanglement

of the latent variables. Some methods propose a regularizer based on the de-

composition of the typical DKL found in the ELBO of a VAE. This DKL can be

decomposed in two terms: mutual information (MI) between x and z; and the

DKL divergence between the aggregate posterior qφ(z) and the standard prior p(z).

For instance, such models include InfoVAE (Zhao et al., 2017a), β-TCVAE and

FactorVAE (Kim & Mnih, 2018) (Total Correlation as surrogate for MI penalty),

DIP-VAE (Kumar et al., 2017) (matching the moments of aggregate posterior

and prior). Another class of methods introduces regularizers to the ELBO that

promote independence between sets of latent variables. This is in contrast with

most methods that focus on independence between individual latent variables.

Some examples are HSIC-VAE (Lopez et al., 2018) and HF-VAE (Esmaeili et al.,

2019). A different perspective is to change the VAE prior structure of z to induce

disentanglement; for instance, Tonolini et al. (2019) proposes a prior on the latent

Chapter 2. Background 74

variables based on sparsity (i.e. Spike and Slab distribution).

More recently some works (iVAE) Khemakhem et al. (2020); Hälvä et al. (2021)

focus on melding nonlinear ICA (Independent Component Analysis) (Bach &

Jordan, 2002; Hyvarinen & Morioka, 2016) with VAEs. The original ICA is a linear

model that focuses on the separation of a mixture of signals into their independent

and separate sources. Indeed, this is related to VAE disentanglement since the

aim is to find statistically independent attributes. These works also reinforce

the fact that inductive biases (e.g. neural architectures, weak-supervision) or

semi-supervision (i.e. a few labelled instances) are needed for effective latent

disentanglement, just like in ICA; otherwise, the problem might be intractable.

The importance of inductive biases or explicit supervision is also discussed in

Locatello et al. (2019a).

Having said that, inductive biases have been explored in literature for the purpose

of disentanglement. These explore things like relational information, cause-effect

of the variation between attributes, grouping information, amongst others. Some

examples can be found in Bouchacourt et al. (2018); Li & Mandt (2018); Ruiz

et al. (2019); Hsu et al. (2017).

Most of the semi-supervised VAE models in literature focus on disentangling a

few latent variables (attributes) that are partly observed (few labels), whilst the

remaining variables (attributes) remain entangled. More recent examples can be

seen in CCVAE (Joy et al., 2020) and DIVA (Ilse et al., 2020), and older models

seen in Paige et al. (2017); Lopez et al. (2018); Bouchacourt et al. (2018). Further,

fully supervised models can be found in CSVAE (Klys et al., 2018) and Fader

Networks (Lample et al., 2017). From another perspective, a fully supervised

GAN (Generative Adversarial Network) version is seen in StarGAN v2 (Choi

et al., 2020). On the other hand, some models assume all ground-truth attributes

(latent variables) are labelled, e.g. the semi-supervised version in Locatello et al.

(2019b).

The type of VAE disentanglement models most useful for our problem, specially

when a trusted set (some labelled data) is available, is the semi-supervised kind.

Those particularly important are the models that can handle only using very few

labelled instances, i.e. sparse semi-supervision. This exact scenario is explored in

Chapter 4. For this reason we pick CCVAE (Joy et al., 2020) as a SOTA baseline

Chapter 2. Background 75

for our problem of outlier detection and data repair. We explain CCVAE in detail

below, within the context of our problem.

2.5.4.1 CCVAE (Semi-Supervised Latent Disentanglement)

Here we present a recent semi-supervised latent disentanglement VAE, the CCVAE

(Joy et al., 2020), which provides reasonable performance at outlier detection and

data repair. This model was explored in the context of systematic error repair

as a baseline, see Chapter 4 for details. Moreover, Joy et al. (2020) compares

CCVAE to M2 model in several tasks, with CCVAE clearly performing much

better at classification and conditional generation.

In Joy et al. (2020) the latent space z is split into two subspaces: the style (or

agnostic) part z\c that is meant to model unlabelled patterns present in the

instance; the characteristics part zc that is meant to model the labelled attributes

(also called characteristics). Formally we have z =
[
zc ; z\c

]
where [;] is the

concatenation operation. An attribute in the context of latent disentanglement

models could be for instance mustache vs. no mustache in a human face, color

of hair, skin color, or even inlier vs. outlier. Therefore, changing the value of

zc when reconstructing an existing data instance at test time is usually called

attribute manipulation, since this changes how the attribute is reflected in the

reconstruction of the instance.

Following Joy et al. (2020) and its implementation, our problem is modelled by

defining zc as a single variable associated with binary label y. Basically, zc can be

seen as a latent representation or embedding encoding whether the data instance

has been corrupted or not. In this context, if y = 1 that means zc should have a

value that reflects the absence of errors when generating x, i.e. an inlier; if y = 0,

then that means zc should have a value that reflects the presence of errors when

generating x, i.e. an outlier.

Chapter 2. Background 76

Generative Model

From Joy et al. (2020), and using a similar notation, we have

p(x, z, y) =pθ(x|z) pψ(zc|y) p(z\c) p(y), (2.49)

p(y) =Bernoulli(y|α), (2.50)

p(z\c) =N (z\c|0, I), (2.51)

pψ(zc|y) =N (zc|µψ(y),σ2
ψ(y)), (2.52)

where pθ(x|z) is a neural network decoder, like in Section 2.5.1, and θ are its

parameters. Once more, α expresses the prior belief about the fraction of inliers

in the dataset. The above generative model expresses a two-component mixture

model on zc with y as gating variable, see eq. (2.52). In fact, we have a mean and

variance for each y value as it pertains to zc where: µψ(y = 1) and σψ(y = 1) for

inliers; and similar for outliers (y = 0).

Variational Model

The variational distribution is factorized as

q(y, z|x) =qϕ,φ(y|x) qϕ,φ(z|x, y), (2.53)

qϕ(y|zc) =Bernoulli(y|πϕ(zc)), (2.54)

qφ(z|x) =N (z|µφ(x),σ2
φ(x)), (2.55)

qϕ,φ(y|x) =

∫
qϕ(y|zc)qφ(z|x)dz, (2.56)

qϕ,φ(z|x, y) =
qϕ(y|zc)qφ(z|x)

qϕ,φ(y|x)
, (2.57)

where qϕ(y|zc) and qφ(z|x) are neural network based encoders, with ϕ and φ as

neural network parameters.

Training Loss

The training loss in Joy et al. (2020) for CCVAE is based on the ELBO, with

one term for the labelled part of data (trusted set), and a second term for the

unlabelled part. Below we quickly present the ELBO loss and the optimization

problem, for a detailed description please see the original paper (Joy et al., 2020).

Chapter 2. Background 77

The labelled part of the ELBO is

LCCVAE(x, y) = Eqφ(z|x)

[
qϕ(y|zc)
qϕ,φ(y|x)

log

(
pθ(x|z) pψ(zc|y) p(z\c)

qϕ(y|zc) qφ(z|x)

)]
+ (2.58)

+ β log qϕ(y|x) + log p(y) ,

where β is the hyperparameter controlling amount of up-sampling and importance

relative to other terms, like in M2 model (section 2.5.3.2). In Joy et al. (2020), for

their application, they found that setting β = 1 brought good results and found

no need to tune it further. In our problem setting, we found that we obtained

better performance by using larger values for β. This is probably because our

application is different, i.e. outlier detection and subsequent repair, and since the

trusted sets (labelled sets) used in our problem setup are quite small.

An important point about CCVAE is that the term that encourages the classifier

qϕ(y|zc) to learn the labels of the trusted set emerges naturally from the labelled

ELBO – see eq. (2.58). As a result, one does not need to add a cross-entropy

term like in M2 model (section 2.5.3.2).

The unlabelled part of the ELBO is

LCCVAE(x) = Eqφ(z|x)qϕ(y|zc)

[
log

(
pθ(x|z) pψ(zc|y) p(z\c) p(y)

qϕ(y|zc) qφ(z|x)

)]
. (2.59)

Lastly, the training procedure is defined by

min
θ, φ, ϕ, ψ

∑
x∈Xu

LCCVAE(x) +
∑

(x,y)∈Xl×Yl

LCCVAE(x, y) . (2.60)

Outlier Detection and Repair Process

After training, we proceed to outlier detection and data repair. We need to

define a score for use in detection, and for that we use the classifier given by the

variational model. The same was done in Joy et al. (2020) for classification tasks,

but one could use a decoder likelihood-based score. The former tends to have

better performance, if available. Hence, for instance outlier detection, we have

the score

Aϕ, φ(x) = − logEqφ(z|x) [qϕ(y = 1|zc)] x ∈ X , (2.61)

which is the approximate negative log-probability of an instance being an inlier.

The user may define the threshold γ or tune it. However, assuming the classifier

is somewhat calibrated, then one can use the a γ ≈ − log(0.5).

Chapter 2. Background 78

If one needs to detect cell outliers, one can use a decoder based anomaly score

like in other VAEs. For CCVAE, this can be defined for some feature d as

Aθ, ψ(x) = − log pθ(xd |
[
µψ(y = 1);µφ(x)\c

]
) x ∈ X , (2.62)

where the mean for zc corresponding to an inlier (y = 1) is used, i.e. µψ(y = 1).

The encoding from non-labelled instance characteristics is reused, i.e. µφ(x)\c.

From the perspective of CCVAE, the repair of an outlier instance is just attribute

manipulation via zc subspace. Once the appropriate zc is found, then one uses

the decoder for reconstruction obtaining a repair. Under our problem definition,

automated repair is very much like conditional generation as seen in Joy et al.

(2020), where samples for zc are drawn from the conditional prior whilst reusing

z\c obtained from encoding the outlier instance. Specifically, we have z =[
zc ∼ pψ(zc|y) ; z\c

]
, where depending on the y value it forces the generated

samples to have, or not have, the presence of the attribute (e.g. inlier / outlier).

In our case, we are interested in automated repair, and thus limiting human

interaction apart from building the trusted set. That means that exploring zc with

user interaction to pick the best repair (reconstruction) for each outlier instance

is not realistic. So we wish to obtain the most likely reconstruction under y = 1,

i.e. the maximum a posteriori, thus defining an automated repair for the outlier

instance. Therefore, the repair for an image instance with continuous features is

given by

x̂ = µθ
([
µψ(y = 1) ; µφ(x)\c

])
x ∈ O, (2.63)

where µψ(y = 1) is the mean for the inlier component of pψ(zc | y), and µφ(x)\c

is the mean of qφ(z\c | x), which excludes the characteristic (labelled) latent

subspace. Similarly, for mixed-type datasets a repair procedure that uses a MAP

estimate of the decoder can be easily defined – as seen in eq. (2.47).

Chapter 3

Robust VAEs for Outlier Detection

and Repair of Mixed-Type Data

3.1 Motivation: How does it fit into the thesis?

The main motivation behind this model proposal was dealing with random error

corruption in data cleaning. The main goal was to develop a model that is

unsupervised and requires as little user intervention. The focus is on the problem

of unsupervised cell outlier detection and repair in mixed-type tabular data, for

the case of point outliers (Section 2.2.1). Traditional methods are concerned only

with detecting which rows in the dataset are outliers. However, identifying which

cells are corrupted in a specific row is an important problem in practice, and

the very first step towards repairing them. The Robust Variational Autoencoder

(RVAE) is introduced as a deep generative model that learns the joint distribution

of the clean data while identifying the outlier cells, allowing for their repair later

on. RVAE explicitly learns the probability of each cell being an outlier, balancing

different likelihood models in the row outlier score, making the method suitable for

outlier detection in mixed-type datasets. Experimentally it is shown that not only

RVAE performs better than several SOTA methods in cell outlier detection and

repair for tabular data, but also that is robust against the initial hyperparameter

selection.

79

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 80

3.2 Introduction

The existence of outliers in real world data is a problem data scientists face daily,

so outlier detection (OD) has been extensively studied in the literature (Chandola

et al., 2009; Emmott et al., 2015; Hodge & Austin, 2004). The task is often

unsupervised, meaning that we do not have annotations indicating whether indi-

vidual cells in the data table are clean or anomalous. Although supervised OD

algorithms have been proposed (Lee et al., 2018; An & Cho, 2015; Schlegl et al.,

2017), annotations of anomalous cells are often not readily available in practice.

Instead, unsupervised OD attempts to infer the underlying clean distribution, and

explains outliers as instances that deviate from that distribution. It is important

to focus on the joint distribution over features, because although some outliers can

be easily identified as anomalous by considering only the marginal distribution

of the feature itself, many others are only detectable within the context of the

other features (Chandola et al., 2009, section 2.2). Recently deep models have

outperformed traditional ones for tabular data tasks (Klambauer et al., 2017),

capturing their underlying structure better. They are an attractive choice for

outlier detection, since they have the flexibility to model a wide variety of clean dis-

tributions. However, outlier detection work has mostly focused on image datasets,

repairing dirty pixels instead of cells in tabular data (Wang et al., 2017b; Zhou &

Paffenroth, 2017; Akrami et al., 2019b).

Outliers present unique challenges to deep generative models. First, most work

focuses on detecting anomalous data rows, without detecting which specific cells

in a row are problematic (Redyuk et al., 2019; Schelter et al., 2018). However,

not enough care is given to cell granularity, which means it is often difficult to

properly repair the dirty cells, e.g. if there are a large number of columns or

when the data scientist is not a domain expert. Work on cell-level detection

and repair often focuses on real-valued features, e.g. images (Zhou & Paffenroth,

2017; Wang et al., 2017b; Schlegl et al., 2017), or does not provide a principled

way to detect anomalous cells (Nguyen & Vien, 2018a). Second, tabular data is

often mixed-type, including both continuous and categorical columns. Although

modelling mixed-type data has been explored before (Nazabal et al., 2020; Vergari

et al., 2019), difficulty arises when handling outliers. Standard anomaly scores are

based on the probability that the model assigns to a cell, but these values are not

comparable between likelihood models, performing poorly for mixed-type data.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 81

Finally, the effect of outliers in unsupervised learning can be insidious. Since

deep generative models are highly flexible, they are not always robust against

outliers (Hendrycks & Dietterich, 2019), overfitting to anomalous cells. When the

model overfits, it cannot identify these cells as outliers, because it has modelled

them as part of the clean distribution, and consequently, most repair proposals

are skewed towards the dirty values, and not the underlying clean ones.

The main contributions of this chapter are: (i) Robust Variational Autoencoder

(RVAE), a novel fully unsupervised deep generative model for cell-level OD and

repair for mixed-type tabular data, for the case of point outliers (see Section 2.2.1).

It uses a two-component mixture model for each feature, with one component for

clean data, and the other component that robustifies the model by isolating outliers.

(ii) RVAE models the underlying clean data distribution by down-weighting the

impact of anomalous cells, providing a competitive anomaly score for cells and a

superior estimate of cell repairs. (iii) A hybrid inference scheme for optimizing

the model parameters, combining amortized and exact variational updates, which

proves superior to standard amortized inference. (iv) RVAE allows to present an

anomaly score that is commensurate across mixed-type data. (v) RVAE is robust

to the selection of its hyperparameters, while other outlier detection methods

suffer from the need to tune their parameters to each specific dataset.

3.3 Related Work

There is relevant prior work in the field of outlier detection and robust inference

in the presence of outliers, a good meta-analysis study presented in Emmott et al.

(2015). Most prior models apply to point outliers (see Section 2.2.1) as this is the

most common type of outlier, and the type we explore in this thesis. Different

deep models have been applied to this task, including autoencoders (Zong et al.,

2018b; Nguyen & Vien, 2018a; Zhou & Paffenroth, 2017), VAEs (An & Cho, 2015;

Wang et al., 2017b) and generative adversarial networks (Schlegl et al., 2017; Lee

et al., 2018). In Nalisnick et al. (2018) the authors show that deep models trained

on a dataset assign high likelihoods to instances of different datasets, which is

problematic in outlier detection. We identify outliers during training rather than

from a fully-trained model, down-weighting their effect on parameter learning.

Earlier in training, the model had less chance to overfit, so it should be easier to

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 82

detect outliers.

Most closely related to our model are methods based on robust PCA (RPCA)

and autoencoders. They focus on unsupervised learning in the presence of

outliers, even though most methods need labelled data for hyperparameter tuning

(Candès et al., 2011; Zhou & Paffenroth, 2017; Zong et al., 2018b; Nguyen & Vien,

2018a; Xu et al., 2018; Akrami et al., 2019b). RPCA-based alternatives often

assume that the features are real-valued, and model the noise as additive with a

Laplacian prior. A problem in RPCA-type models is that often the hyperparameter

that controls the outlier mechanism is dataset dependent and difficult to interpret

and tune. In Wang et al. (2017b), the authors proposed using a VAE as a recurrent

unit, iteratively denoising the images. This iterative approach is reminiscent of

the solvers used for RPCA. However, their work is not easily extended to mixed

likelihood models and suffers from the same problems as VAEs when computing

row scores (Section 3.5.3).

Robust Variational Inference. Several methods explore robust divergences for

variational learning in the presence of outliers applied to supervised tasks (Regli

& Silva, 2018a; Futami et al., 2018). These divergences have hyperparameters

which are dataset dependent, and can be difficult to tune in unsupervised outlier

detection; in contrast, the α hyperparameter used in RVAE is arguably more

interpretable, and experimentally robust to misspecification. Recently a VAE

model using one of these divergences in the decoder was proposed for down-

weighting outliers (Akrami et al., 2019b). However, in contrast to our model, they

focused on image datasets and are not concerned with cell outliers. The same

hyperparameter tuning problem arises, and it is not clear out to properly extend

to categorical features.

Bayesian Data Reweighting. Wang et al. (2017a) propose an approach that

raises the likelihood of each observation by some weights and then infer both the

latent variables and the weights from corrupted data. Unlike RVAE, these weights

are only defined for each instance, so the method cannot detect cell-level outliers.

Also, the parameters of the model are trained via MCMC instead of variational

inference, making them more difficult to apply in deep generative models.

Classifier Confidence. Several methods explore adding regularization to improve

neural network classifier robustness to outliers (Lee et al., 2018; Hendrycks et al.,

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 83

2019). Neural network based classifiers tend to be over-confident, and can overfit

to spurious patterns. Regularization can come in form of adding uniform noise over

the categories of target labels (label tempering); or even adding an entropy-based

term to the cross-entropy cost in order to avoid over-confidence. However, the

regularization hyperparameters are not interpretable and often require a validation

dataset to tune them. Other works like Hendrycks & Gimpel (2017), use the

confidence of the predicted distribution as a measure of outlier detection.

3.4 Problem Setting

The work in this chapter assumes an unsupervised training setting where one only

has access to dataset X , where a data instance is given by x ∈ X . Notation for

the unsupervised problem setting is found in Section 2.1. The problem definition

for the outlier detection task is in Section 2.2.2, and the definition for the data

repair task is in Section 2.3.1. We only consider outliers that are corruption-based

of the random error kind, which fit within the scope of point outliers (see Section

2.2.1). Note that if possible we simplify the notation by removing the instance

index n. For instance, wnd is same as wn, or xd is same as xnd, or xn is same as x.

Cells in the dataset are potentially corrupted with an unknown noising process

appropriate for the feature type. The objective in this work is not only detecting

the anomalous instances in the dataset, termed row outliers, but also determining

the specific subset of cells that are anomalous, termed cell outliers, proposing

potential repair values for them.

In this chapter we aim to improve the standard VAE model to be robust to

corruption, and perform well at point outlier detection and repair. The Standard

VAE model definition for mixed-type data can be found in Section 2.5.1 in the

Background chapter.

3.5 Proposal: Robust Variational Autoencoder (RVAE)

To improve VAEs for outlier detection and repair, we want to make them more

robust by automatically identifying potential outliers during training, so they are

down-weighted when training the generative model. We also want a cell-level

anomaly score which is comparable across continuous and categorical attributes.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 84

We can achieve both goals by modifying the generative model of the VAE.

Here we define the novel robust variational autoencoder (RVAE), a deep generative

model based on a two-component mixture model likelihood (decoder) per feature,

which isolates the outliers during training. RVAE is composed of a clean component

pθ(xd|z) for each feature d, explaining the clean cells, and an outlier component

p0(xd), explaining the outlier cells. A mixing variable wd ∈ {0, 1} acts as a gate

to determine whether cell xd should be modelled by the clean component (wd = 1)

or the outlier component (wd = 0).

We define the marginal likelihood of the mixture model under for x ∈ X as1

p(x) =
∑
w

∫
dz p(z) p(w) p(x|z,w), (3.1)

p(x|z,w) =
D∏
d=1

pθ(xd|z)wd p0(xd)
1−wd , (3.2)

where w ∈ {0, 1}D is modelled by a Bernoulli distribution

p(w) =
D∏
d=1

Bernoulli(wd|α), (3.3)

and α ∈ [0, 1] is a parameter that reflects our belief about the cleanliness of

the data. To approximate the posterior distribution p(z,w|x), we introduce the

variational distribution

qφ,π(w, z|x) = qφ(z|x)
D∏
d=1

qπ(wd|x), (3.4)

with qφ(z|x) defined in equation 2.5 and qπ(wd|x) = Bernoulli(wd|πd(x)). The

probability πd(x) can be interpreted as the predicted probability of cell xd being

clean. This approximation uses the mean-field assumption that w and z are

conditionally independent given x. Furthermore, a similar mean-field assumption

is made about the dimensions of w being conditionally independent given x.

Finally, the ELBO for the RVAE model can be written as

L(x) =
D∑
d=1

Eqφ(z|x) [πd(x) log pθ(xd|z) + (1− πd(x)) log p0(xd)]

−DKL(qφ(z|x)||p(z))−DKL(qπ(w|x)||p(w)), (3.5)

1Mixture models can also be written in product form using mixing variables wd (Bishop,
2006, Section 9, page 431), as we adopt here.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 85

where the overall training loss to minimize is

I = − 1

N

∑
x∈X

L(x). (3.6)

Examining the gradients of equation 3.6 helps to understand the robustness

property of the RVAE. The gradient of I with respect to the model parameters θ

is given by

∇θ I = − 1

N

N∑
n=1

D∑
d=1

πd(x) Eqφ(z|x) [∇θ log pθ(xd|z)] . (3.7)

We see that πd(x) acts as a weight on the gradient. Cells that are predicted as

clean will have higher values of πd(x), and so their gradients are weighted more

highly, and have more impact on the model parameters. Conversely, cell outliers

with low values of πd(x) will have their gradient contribution down-weighted. A

similar formulation can be obtained for the encoder parameters φ.

Lastly, we note that the mean-field assumption on w (in equation 3.4) is inspired

by the random error setting on the outliers. Indeed, this is the problem setting

explored in this chapter. Random errors corrupt cells independently, and hence

there is no need to model correlations between different cell (feature) errors.

Therefore, one can make the assumption that w can be modelled by a factorized

distribution on its D features. However, if the errors were of systematic or

structured nature, then modelling correlations between different dimensions of w

would be relevant and appropriate. Still, the modelling of correlations between

cells errors can perhaps be better achieved through a subspace in z. Specifically,

as it comes to modelling efficiency. In fact, in Chapter 4 we explore a possible

solution (CLSVAE) to the problem of systematic errors through latent modelling

in z space.

3.5.1 Outlier Model

The purpose of the outlier distribution p0(xd) is to explain the outlier cells in

the dataset, removing their effect in the optimization of the parameters of clean

component pθ. For categorical features, we propose using the uniform distribution

p0(xd) =
1

Cd
. (3.8)

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 86

Such a uniform distribution assumption has been used in multiple object modelling

(Williams & Titsias, 2003) as a way to factor in pixel occlusion. In Chemudugunta

et al. (2006) a similar approach for background words is proposed. For real

features, we standardize the features to have mean 0 and standard deviation 1.

We use an outlier model based on a broad Gaussian distribution2

p0(xd) = N (xd | 0, S) , (3.9)

with S > 1. Outlier cells modelled by the outlier component will be further apart

from md(z) relative to clean ones.

Although more complex distributions can be used for p0(xd), we show empirically

that these simple distributions are enough to detect outliers from a range of noise

levels (Section 3.6). Furthermore, RVAE can easily be extended to handle other

types of features (Nazabal et al., 2020): for count features we can use a Poisson

likelihood, where the outlier component p0 would be a Poisson distribution with a

large rate; for ordinal features we could have an ordinal logit likelihood, where p0

can be a uniform categorical distribution.

3.5.1.1 Assumptions and Prior Work on Outlier Model

Broad distributions and robust statistics. In this chapter, it is assumed we

are dealing with random error corruption as a source of dirty cells, and thus the

outliers. The corruption is moderate or low, and therefore most of the instances

are inliers and their cells are clean. Under these circumstances, it is common in

classic robust statistics (Barron, 2019) to use heavy-tailed distributions to mitigate

the contributions of these outliers to the training of parametric models. Some

examples of heavy-tailed distributions are t-Student, Laplace, Cauchy, or Richter

(Gales & Olsen, 1999b). The reasoning is that outlier values (i.e. dirty cells)

will deviate from the more common inliers, and thus outliers will be modelled by

the tail-end of the distribution. Indeed, the negative log-likelihood loss using a

heavy-tailed distribution will make larger deviations of outlier cells have a lower

loss value than typical distributions (e.g. Gaussian). Hence, the likelihood is now

less sensitive to outliers, and consequently the model parameters are as well. In

fact, in gradient-based training the outliers will have a much smaller magnitude

compared to inliers, and thus contribute less to parameter training. However,

these assumptions may not work for systematic error corruption (see Chapter 4).

2This is standard (Quinn et al., 2009; Gales & Olsen, 1999b)

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 87

In the case of RVAE, we used a heavy-tailed distribution based on a 2-component

Richter distribution (Gales & Olsen, 1999b), where the objective is to mitigate

outlier contribution to the training of pθ(x|z). In this case, the heavy-tail behavior

is modelled by p0(xd) where the outliers are captured. Indeed, the Richter distri-

bution has been used for capturing rare or outlier instances in speech recognition

in its broader Gaussian components (Gales & Olsen, 1999b). In (Quinn et al.,

2009) a similar 2-component Richter distribution is defined for time-series data,

where novelty instances are captured by a broader component.

Outlier model dependency on x. Given the current assumptions on the

outliers (i.e. random errors), it is possible for RVAE to use a p0(xd) where its

parameters are not dependent on the original x for simplification purposes. In

fact, for continuous features the mean parameter of p0(xd) can be 0 since the

data is standardized – i.e. mean of the original feature is subtracted. For a

categorical feature no notion of a mean parameter exists, so a broad distribution

can be modelled by a uniform across categories. In both cases this yielded good

results for us in the experiments. However, in cases where continuous feature

standardization does not work as well, it is possible to set the mean of p0(xd) to

the mean of pθ(x|z) and hence obtain a proper Richter distribution. In this case,

the dependency of p0(xd) parameters on x becomes obvious. Moreover, using a

stop-gradient operator for reusing the decoder mean might be useful to prevent

gradients of dirty cells to affect the AE parameters (θ and φ).

Outlier model dependency on z. Since the assumption is that random errors

are corrupting cells independently in the data, there should not be any correlation

of the cell errors between multiple data features. Hence, there is no need to make

p0(xd) dependent on z as error modelling between different features is not relevant

here. On the other hand, for systematic error corruption (see Chapter 4) cell

errors affecting multiple features will be correlated, and therefore modelling that

correlation through z can be quite important for outlier detection and repair. In

fact, the CLSVAE model in Chapter 4 takes that assumption.

3.5.2 Inference

We use a hybrid procedure to train the parameters of RVAE that alternates

amortized variational inference using stochastic gradient descent for φ and θ, and

coordinate ascent over π. When we do not amortize π, but rather treat each

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 88

πd(x) ∈ [0, 1] as an independent parameter of the optimization problem, then an

exact solution for πd(x) is possible when φ and θ are fixed. Optimizing the ELBO

equation 3.5 w.r.t. πd(x), we obtain an exact expression for the optimum3

π̂d(x) = g

(
r + log

α

1− α

)
, (3.10)

where

r = Eqφ(z|x)

[
log

pθ(xd|z)

p0(xd)

]
, (3.11)

where g is the sigmoid function. The first term in equation 3.10 represents the

density ratio r between the clean component pθ(xd|z) and the outlier component

p0(xd). When r > 0 it will bias the decision towards assuming the cell being

clean, conversely r < 0 it will bias the decision towards the cell being dirty. Such

a ratio r has arisen in the literature (Hido et al., 2011; Yamada et al., 2017).

usually between a distribution trained on clean (or labelled) data and the test-

set distribution, where one is performing outlier detection. The second term in

equation 3.10 represents our prior belief about cell cleanliness, defined by α ∈ [0, 1].

Higher values of α will skew the decision boundary towards a higher π̂d(x), and

vice-versa. This coordinate ascent strategy is common in variational inference for

conjugate exponential family distributions (see e.g. Jordan et al. 1999). We term

this model RVAE-CVI (Coordinate ascent Variational Inference) below.

Alternatively, πd(x) can be obtained using amortized variational inference. How-

ever, two problems arise in the process. First, an inference gap is introduced by

amortization, leading to slower convergence to the optimal solution. Second, there

might not be enough outliers in the data to properly train a neural network to

recognize the decision boundary between clean and dirty cells. We term this model

RVAE-AVI (Amortized Variational Inference). RVAE inference is summarized

in Algorithm 1, for both the coordinate ascent version (RVAE-CVI) and the

amortized version (RVAE-AVI). We used Adam (Kingma & Ba, 2014) as the

gradient-based optimizer (line 15).

Note that in line 14 of Algorithm 1 for RVAE-CVI it is important to clarify

that no gradients of θ are being passed through the estimate of π̂md. Indeed, if

using RVAE-CVI the π̂md estimate step in line 13 always uses the stop-gradient

operation for all gradients of θ and φ. This is by design, as a coordinate ascent

step for π̂md should assume θ and φ are static parameters during inference, and

3The derivation of equation equation 3.10 is provided in the Additional Notes (Section 3.7.2).

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 89

vice-versa. Thus π̂md should not allow for gradients being passed through when

applying (stochastic) gradient descent on θ and φ. Empirically, we tried both

the option of having gradients pass through, and the current one of stopping

them. Generally, from a repair performance perspective, the best option was to

use stop-gradient. In fact, in higher corruption scenarios this was more obvious

has letting the gradients through would lead to RVAE-CVI more easily overfit to

errors.

Algorithm 1 RVAE Inference

1: procedure RVAE(η learning rate, M batch size, T number epochs, α prior

value)

2: if RVAE-AVI = True then

3: Define NN parameters: Ψ = {φ, θ, τ};
4: else if RVAE-CVI = True then

5: Define NN parameters: Ψ = {φ, θ};

6: Initialize Ψ;

7: for 1, ..., T do

8: Sample mini-batches {xm}Mm=1 ∼ p(x);

9: Evaluate pθ(xmd|zm) and p0(xmd) ∀m, d;

10: if RVAE-AVI = True then

11: Evaluate encoder πτ (xm);

12: else if RVAE-CVI = True then

13: Infer π̂md,∀m, d using eq. equation 3.10

14: gΨ ←− ∇Ψ I(Ψ, π(xm), α) using eq. equation 3.6;

15: Ψ←− Optimizer(Ψ, gΨ, η);

3.5.3 Anomaly Scores for Outlier Detection

A natural approach to determine which cells are outliers in the data is computing

the likelihood of the cells under the trained model. In a VAE, the scores for row

and cell outliers would be

Cell: − Eqφ(z|x) [log pθ(xd|z)] , Row: −
D∑
d=1

Eqφ(z|x) [log pθ(xd|z)] , (3.12)

where a higher score means a higher outlier probability. However, likelihood-based

anomaly scores present several problems, specifically for row scores. In mixed-type

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 90

datasets categorical features and real features are modelled by probability and

density distributions respectively, which have different ranges. Often this leads to

continuous features dominating over categorical ones. With the RVAE we propose

an alternative anomaly score based on the mixture probabilities π̂d(x)

Cell: − log π̂d(x), Row: −
D∑
d=1

log π̂d(x), (3.13)

where again a higher score means a higher outlier probability. Notice that the

row score is just the negative log-probability of the row being clean, given by

π̂ =
∏D

d=1 πd(x). These mixture-based scores are more robust against some

features or likelihood models dominating the row anomaly score, making them

more suitable for mixed-type datasets.

3.5.4 Repair Process for Dirty Cells

Cell repair is related to missing data imputation. However, this is a much harder

task, since the positions of anomalous cells are not given, and need to be inferred.

After the anomalous cells are identified, a robust generative model allows to impute

them given the dirty row directly. In general, repair under VAE-like models can

be obtained via maximum a posteriori (MAP) inference,

x̂d = arg max
xd

pθ(xd|µφ(x)), (3.14)

where x̂d is the proposed repair for cell d of some dirty instance x. Note that

the underlying inlier value, or ground-truth value, for the cell is given by x̃d. In

the case of RVAE, pθ(xd|z) is the clean component responsible for modelling the

underlying clean data, see equation 3.2. This reconstruction is akin to robust

PCA’s clean component. In practice, for real features x̂d = md(z), the mean of

the Gaussian likelihood, and for categorical features x̂d = arg maxc f(adc(z)), the

highest probability category. Note that index c ∈ {1, ..., Cd} refers to a unique

class for categorical feature d; where the total number of categories is Cd. Other

repair strategies are discussed in the Additional Results (Section 3.8.7).

3.6 Experiments

We showcase the performance of RVAE and baseline methods, for both the task

of identifying row and cell outliers and repairing the corrupted cells in the data4.

4https://github.com/sfme/RVAE_MixedTypes/

https://github.com/sfme/RVAE_MixedTypes/

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 91

Four different datasets from the UCI repository (Lichman, 2013), with a mix

of real and categorical features, were selected for the evaluation (see Additional

Notes, Section 3.7.1). We compare RVAE with ABDA (Vergari et al., 2019) on a

different outlier detection task in the Additional Results (Section 3.8.6).

3.6.1 Corruption Process

All datasets were artificially corrupted in both training and validation sets. This

is a standard practice in outlier detection (Futami et al., 2018; Redyuk et al., 2019;

Krishnan et al., 2016; Natarajan et al., 2013), and a necessity in our setting, due to

the scarcity of available datasets with labelled cell outliers. No previous knowledge

about corrupted cell position, or dataset corruption proportion is assumed.

For each dataset, a subset of cells are randomly selected for corruption, following

a two-step procedure: a) a percentage of rows in the data are selected at random

to be corrupted; b) for each of those selected rows, 20% of features are corrupted

at random, with different sets of features being corrupted in each select row. For

instance, a 5%-20% scenario means that 5% of the rows in the data are randomly

selected to contain outliers, and for each of these rows, 20% of the features are

randomly corrupted, leading to 1% of cells corrupted overall in the dataset.

We will consider for the experiments five different levels of row corruption,

{1%, 5%, 10%, 20%, 50%}, leading to five different levels of cells corrupted across

the data, {0.2%, 1%, 2%, 4%, 10%}. We repeat this process five times, and provide

in the next sections the results for the aggregate of all datasets for one of those

experiments. The full disclosure of the results per dataset can be found in the

Additional Results (Section 3.8), including results with error bars (Section 3.8.5).

Real features: Additive noise is used as a noising process, with dirty cell values

obtained as xd = x̃d + ζ, with ζ ∼ pnoise(µ, η). Note that the noising process is

performed before standardizing the data. Four different noise distributions pnoise

are explored: Gaussian noise (µ = 0, η = 5σ̂d), with σ̂d the statistical standard

deviation of feature d; Laplace noise (µ = 0, η = {4σ̂d, 8σ̂d}); Log-Normal

noise (µ = 0, η = 0.75σ̂d); and a Mixture of two Gaussian noise components

(µ1 = −0.5, η1 = 3σ̂d, with probability 0.6 and µ2 = 0.5, η2 = 3σ̂d with probability

0.4).

Categorical features: The noising process is based on the underlying marginal

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 92

(discrete) distribution. We replace the cell value by a dirty one by sampling from

a tempered categorical distribution5 (and excluding the current clean category):

xdc ∼
pc(x̃d)

β∑Cd
c=1 pc(x̃d)

β
, (3.15)

with the range β = [0, 0.5, 0.8]. Notice that, when β = 0, the noise process reduces

to the uniform distribution, while when β = 1, the noising process follows the

marginal distribution.

3.6.2 Evaluation Metrics

In the anomaly detection experiments, we use Average Precision (AVPR) (Salton

& McGill, 1986; Everingham et al., 2014), computed according to the anomaly

scores for each method. AVPR is a measure of area under the precision-recall

curve, so higher is better. For cell outliers we report the macro average of the

AVPR for each feature in the dataset6. In the repair experiments, different metrics

are necessary depending on the feature types. For real features, we compute

the Standardized Mean Square Error (SMSE) between the estimated values x̂nd

and the original ground truth in the dirty cells x̃nd, normalized by the empirical

variance of the ground truth values:

SMSEd =

∑Nd
c

n=1(x̃nd − x̂nd)2∑Nc
n=1(x̃nd − xd)2

, (3.16)

where xd is the statistical mean of feature d (across all instances n ∈ N) and Nd
c

is the number of corrupted cells for that feature7. For categorical features, we

compute the Brier Score between the one-hot representation of the ground truth

x̃nd and the probability simplex estimated for each category in the feature:

Brierd =
1

2Nc

Nd
c∑

n=1

C∑
c=1

(x̃ndc − pc(xnd))2, (3.17)

where pc(xnd) is the probability of category c for feature d, x̃ndc the one-hot true

value for category c, and C the number of unique categories in the feature. We

used the coefficient 1
2

in the Brier score to limit the range to [0, 1]. We name both

metrics as SMSE below for simplicity, but the correct metric is always used for

each type.

5Also known as power heuristic in importance sampling.
6The AVPR macro average is defined as the average of the AVPR for all the features in a

dataset.
7In our experiments xd = 0 in practice, since the data has been standardized before using

any method

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 93

3.6.3 Competing Methods

We compare to several standard outlier detection algorithms. Most methods

are only concerned about row outlier detection, whilst only a few can be used

for cell outlier detection. For more details on hyperparameter selection and

network settings for RVAE and competitor methods, see the Additional Notes

(Section 3.7.3). In addition, the outlier detection and repair process for VAEs

and Deep RPCA is described in the Background chapter, in Section 2.5.1 and

Section 2.5.2.2 respectively. The VAE-`2 model in particular is described in Section

2.5.2.1. All models are trained once using all the data instances (rows), once the

hyperparameter setting has been selected.

Exclusively row outlier detection. We consider Isolation Forest (IF) (Liu et al.,

2008), an outlier detection algorithm based on decision trees, which performed

quite well in the extensive comparison of Emmott et al. (2015); and One Class

Support Vector Machines (OC-SVM) (Schölkopf et al., 1999) using a radial basis

function kernel. These traditional methods were discussed in Section 2.2.3 of

Background chapter.

Row and cell outlier detection. We compare to

• (i) estimating the Marginal Distribution for each feature and using the

negative log-likelihood as the anomaly score. For real features we fit a

Gaussian mixture model with the number of components chosen with the

Bayesian Information Criterion. The maximum number of components is

set at 40. For categorical features, the discrete distribution is given by the

normalized category frequency.

• (ii) a combination of OC-SVM and Marginal Distribution for each feature.

We use Platt scaling to transform the anomaly score of OC-SVM for each row

(to obtain log-probability), and then combine it with marginal log-likelihood

of each feature. This score, a combined log-likelihood, is then used for cell

outlier detection.

• (iii) VAEs with `2 regularization and anomaly scores given by equation 3.12,

additional details in the Background chapter (Section 2.5.2.1).

• (iv) DeepRPCA (Zhou & Paffenroth, 2017), an unsupervised model inspired

by robust PCA. The data X is divided in two parts X = X̂ + S, where X̂

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 94

is a deep autoencoder reconstruction of the clean data, and S is a sparse

matrix containing the estimated outlier values. Anomaly scores for rows

are given by the Euclidean norm
√∑D

d=1 |Snd|2, whilst cell scores are given

by |Snd|2, where Snd ∈ Se. For more details on DeepRPCA and its outlier

detection or repair process please see Section 2.5.2.2 in Background chapter.

For implementation details please see Additional Notes, in Section 3.7.3,

where the handling of categorical is also discussed.

• (v) a set of Conditional Predictors (CondPred), where a neural network

parametrizing pθ(xn) is employed for each feature in the data given the

rest. This can be seen as a pseudo-likelihood model given by pθ(xn) ≈∏
d pθ(xnd|xn \d). A deep version was found to work better than linear in all

metrics. However, `2 regularization is necessary to prevent overfitting, and

the model is overall much slower to train than VAE.

Repair: We compare to VAE, DeepRPCA, Marginal Distribution method and

Conditional Predictor (CondPred) method for repairing dirty cells (same model

parameters as in outlier detection). We use equation 3.14 for all VAE-based

methods. For DeepRPCA the estimate X̂ is used. For CondPred the estimate is

x̂nd = arg maxxnd pθ(xnd|xn \d), with xn \d meaning all features in xn except xnd.

The Marginal Distribution method takes xnd and uses as estimate the mean of

the closest GMM component in the real line. For RVAE, results using a different

inference strategy (pseudo-Gibbs sampling, (Rezende et al., 2014)) are provided

in Additional Results (Section 3.8.7).

Additional Details

We note that a leave-one-out retraining could have been applied to the CondPred

baseline. This is a strategy that can be used in predictor type models (i.e.

regression or classification) for outlier detection. However, in practice we trained

CondPred on all instances (rows) together just once.

This leave-one-out retraining would exclude each instance (row) in the dataset

from training one at a time, and then that trained model would try and predict

said instance. In this case, if the instance could not be predicted with confidence,

then it would be considered an outlier. Note that we would have to retrain the

model once for each instance. The main idea behind this is that the concept of an

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 95

inlier would have been learnt by the model during training using the remainder

data. Hence, the model should be able to reliably predict inliers at test time. This

strategy can be readily applied cell-wise for a row, where a predictor pθ(xnd|xn \d)
is used to predict a particular cell.

Nevertheless, in practice CondPred used the negative log-likelihood of the predictor

to measure the outlierness of a cell, which is a common anomaly score. Since

we heavily regularized each predictor, the effect of outliers on the training of the

models is mitigated (Arpit et al., 2017), which in our experiments yielded good

outlier detection performance. In fact, the purpose of RVAE is also to mitigate

the contribution of outliers to model parameters (Section 3.5).

Although a leave-one-out retraining would most likely lead to a better performing

baseline in terms of outlier detection, it is not clear it would perform better at

repair. For instance, the predictor being called upon to repair the cell could have

low confidence in proposing a cell value. Moreover, the cost of training several

deep or even linear models for each row in a moderately sized dataset is very costly

in practice. Once more, we would have to train a predictor for each feature in the

dataset, which makes it even more intractable. Note that CondPred is already the

most computationally expensive model in the experiments. However, in smaller

datasets and using shallower models this type of leave-one-out strategy could be

considered as a possibility. In fact, all models that present a log-likelihood for

each cell could in theory apply this leave-one-out strategy for outlier detection

(e.g. VAEs).

3.6.4 Hyperparameter Selection for Competing Methods

In order to tune the hyperparameters for the competing methods, we reserved a

validation set with known inlier / outlier labels and ground truth values. This

validation set was not used by the RVAE method. Thus the performance obtained

by the competitor methods is an optimistic estimate of their performance in

practice. In contrast, RVAE method had no access to the validation set. Note

also that RVAE-CVI is robust to the selection of its parameter α in equation 3.10,

as we will show in Section 3.6.8. In Figure 3.1 we compare the performance of

the conditional predictor method and VAE, with respect to RVAE-CVI when `2

regularization is not used, and when the best `2 regularization value is used for

each dataset. We term RVAE-CVI-nll our model with anomaly score as defined

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 96

Figure 3.1: Row and cell outlier detection performance (higher means better) of VAE

and CondPred methods without L2 regularization and best choice of λ.

in equation 3.12 and RVAE-CVI-pi our model with anomaly score as defined

in equation 3.13. We can observe clearly that a significant gap exists in the

performance of these competitor methods when not fine-tuned, making explicit

the reliance of these methods on a labelled validation set. In the rest of the

experiments we will use the best possible version of each competitor method.

3.6.5 Outlier Detection Results

We compare the performance of the difference methods in outlier detection, both at

row and cell levels. We focus on Gaussian noise (µ = 0, η = 5σd) for real features

and uniform categorical noise, i.e. β = 0 in equation 3.15, relegating results on

other noise processes scenarios to Section 3.6.7. In Figure 3.2 we show the average

outlier detection performance across all datasets for all outlier detection models in

terms of both row (left figure) and cell outlier detection (right figure). We relegate

RVAE-AVI results to the Additional Results (Section 3.8.3), since RVAE-AVI is

worse than RVAE-CVI in general. More results on the outlier detection for each

dataset are also available in the Additional Results (Section 3.8.1 and Section

3.8.5). In the right figure, we observe that RVAE-CVI is performing similar to

the conditional predictor method on cell outlier detection while being consistently

better than the other methods. Additionally, it performs comparatively well in

row outlier detection, being similar to the conditional predictor at higher noise

levels. We remind the reader that RVAE-CVI does not need a validation set

to select its parameters. This means that RVAE-CVI is directly applicable for

datasets where no ground truth is available, providing a comparable performance

to other methods where parameter tuning for each dataset is necessary. Figure 3.2

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 97

Figure 3.2: Row and cell outlier detection scores for the average of the four datasets

in 5 different cells corruption levels. Left: AVPR at row level. Right: AVPR at cell

level.

Figure 3.3: Average AVPR over all the features in the four datasets partitioned by

type. Left: AVPR for real features. Right: AVPR for categorical features

(left figure) also confirms our hypothesis (Section 3.5.3) on the proper score to

compute row outliers. We can see in the upper figure that RVAE-CVI using scores

based on estimate π̂d(x), as per score equation 3.13, are better for row outlier

detection compared to averaging different feature log-likelihoods equation 3.12.

Further analysis of the outlier detection performance of each model for the different

feature types is shown in Figure 3.3. While the model based on estimating the

marginal distribution works well for real features, it performs poorly on categorical

features. Similarly the method combining OCSVM and the marginal estimator

detects outliers better than the other methods in real features and low noise

levels, but performs poorly for categorical features. In contrast, RVAE performs

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 98

Figure 3.4: SMSE computed over the dirty cells in all datasets (lower means better).

It shows the average over the four datasets for 5 different noised cells percentages.

Y-axis is provided in log-scale.

comparatively better across different types than the other models, with comparable

performance to the conditional predictor.

3.6.6 Data Repair Results

In this section, we compare the ability of the different models to repair the

corrupted values in the data. We use the same noise injection process as in Section

3.6.5. Figure 3.4 shows the average SMSE repair performance across datasets

for all models when repairing the dirty cells in the data (more details in the

Additional Results, Sections 3.8.2 and 3.8.5). We can observe that RVAE-CVI

outperforms the other models for all the different cell corruption scenarios, being

of particularly significance in lower cell corruption regimes. This is significantly

important since all the comparator methods required hyperparameter selection

and still performed worse than RVAE-CVI. Also, in Figure 3.5 we can see the

repair performance of different models according to the types of features in the

data. Notice that RVAE-CVI is consistently better than the other models across

real features while being slightly worse on categorical features.

3.6.7 Robustness to Noising Processes

Figure 3.6 shows the performance of the different models across different com-

binations of noise processes for all datasets and noise corruption levels (three

other noise processes are covered in the Additional Results, Section 3.8.4). We

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 99

Figure 3.5: Average SMSE over all the features in the four datasets according to their

type. Left: AVPR for real features. Right: AVPR for categorical features

Figure 3.6: Effect of three different noising processes. Upper figures: average cell

outlier detection across datasets. Lower figures: average SMSE on the dirty cells

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 100

Figure 3.7: RVAE-CVI performance with different choices for α. Left: average cell

AVPR over the datasets. Right: average repair over dirty cells

notice that all the models perform consistently across different types of noise.

RVAE-CVI performs better in repair for low-level noise corruption, while providing

competitive performance in outlier detection. Also, our choice of outlier models

on Section 3.5.1 does not have a negative effect on the ability of RVAE to detect

outliers and repair them. Different noise processes define what is feasible to detect

and repair.

3.6.8 Robustness to Hyperparameter Values

In this section, we examine the robustness of RVAE inference to the choice

α, and study its effect in both outlier detection and repair of dirty cells. We

have analyzed values of α in the set {0.2, 0.5, 0.8, 0.9, 0.99} and evaluated RVAE-

CVI in all datasets under all levels of cell corruption and the noising process of

Sections 3.6.5 and 3.6.6. Figure 3.7 shows the performance of RVAE-CVI in both

outlier detection (left figure) and repair (right figure) across different values of α.

Larger values of α lead in general to a better outlier detection performance, with

a slight degradation when we approach α = 1. Repair performance is consistent

across different choices of α, but values closer to 0 or 1 lead to a degradation when

repairing dirty cells.

3.7 Additional Notes

In this section we provide additional details and notes about the datasets and

implementation details of the models used in the experiments (Section 3.6). We

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 101

also discuss hyperparameter selection and data pre-processing. The derivation of

the coordinate step update for π̂d(x) in eq. (3.10) is also found here.

3.7.1 Dataset details

Dataset Rows Real Categorical

features features

Wine 6497 12 1

Adult 32561 5 10

Credit Default 30000 14 10

Letter 20000 0 17

Table 3.1: Properties of the tabular datasets employed in the experiments.

3.7.2 Derivation of Coordinate Step for Weights

Here we derive eq. 3.10, which is the exact expression for π̂d(x) to be used in

coordinate ascent optimization. Given eq. (3.5) and eq. (3.6), we can write the

bound I on
∑

x∈X log p(x) with respect to πd(x) as

I ∝
∑
x∈X

D∑
d=1

πd(x)Eqφ(z|x)[log pθ(xd|z)]

+
∑
x∈X

D∑
d=1

(1− πd(x))Eqφ(z|x)[log p0(xd)]

− πd(x) log
πd(x)

α

− (1− πd(x)) log
1− πd(x)

1− α

The derivative of this bound w.r.t. πd(x) can be easily computed:

∂ I
∂πd(x)

= Eqφ(z|x)[log pθ(xd|z)]

− Eqφ(z|x)[log p0(xd)]

− log
πd(x)

α
+ log

1− πd(x)

1− α

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 102

Evaluating ∂ I
∂πd(x)

= 0 and solving for πd(x), we obtain the coordinate update for

the weights:

π̂d(x) =
1

1 + exp
(
−
(
Eqφ(z|x)[log pθ(xd|z)

p0(xd)
] + log α

1−α

)) ,
which is the sigmoid function applied to the expected log density ratio between

the clean model and the outlier model plus the logit of the prior probability.

3.7.3 Additional details for RVAE and Competing Methods

• Data Pre-Processing: For all models and competitor methods the real

features were standardized, i.e. subtracting by the empirical mean and

dividing by standard deviation. One-hot encoding for categorical features

was used depending on the method, as defined below.

• Validation Set: 10% of each dataset was separated from the rest of the

data to be employed as a validation set, with known ground truth of the

corrupted cells, for hyperparameter selection on all baselines. Our RVAE

model does not use this validation set in any of the experiments.

• Hyperparameter Selection: The criterion used for hyperparameter selec-

tion on all baselines was the AVPR in the outlier detection task registered

in the validation set. The exception is the Marginals Distribution baseline,

where the number of components is chosen via BIC score.

3.7.3.1 RVAE, VAE, DeepRPCA and Conditional Predictor methods

• Architecture: For VAE, RVAE and DeepRPCA, we used an intermediate

hidden layer in both encoder and decoder, size 400. The latent space

dimension was chosen to be size 20. In the CondPred baseline, we found that

a deep version of the base conditional predictor was superior than a linear one

in both outlier and repair metrics. Two inner layers of dimension 200 and 50

for each predictor were employed, which made this model substantially slower

than all autoencoder baselines. The non-linear activation used throughout

was ReLU (Rectified Linear Unit).

• Optimization: We used the Adam optimizer as provided in Pytorch to

train the encoder and decoder parameters, for all VAE-based models. In the

case of RVAE, VAE and CondPred models we minimized their respective

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 103

negative losses. In CondPred, each conditional predictor had its own Adam

optimizer, we found this to work better. The initial learning rate used in

experiments was 0.001. All models ran for 100 epochs on all datasets, noise

levels and noise processes. Since access to a validation set is impossible in a

unsupervised learning setting, no standard early stopping can be defined.

In the case of DeepRPCA, we use Adam to train the encoder and decoder

parameters, as in the original paper. The optimization process used to

obtain data matrix X̂, and noise matrix S, was carried out using ADMM

(Alternating Method of Multipliers). We use row structured `2,1 version of

DeepRPCA for outlier detection as it performed better. In order for the

ADMM optimization procedure to work, in terms of categorical reconstruc-

tion loss we follow the work in (Udell et al., 2016) (Section 6, Categorical

PCA), using cross-entropy loss to aggregate the different one-hot dimensions.

This yielded better experimental results than one-vs-all type aggregation.

All models ran for 20 ADMM iterations, each using 10 intermediate epochs

of Adam to train the autoencoder component X̂. All the above are in

accordance to DeepRPCA paper (Zhou & Paffenroth, 2017). It should be

noted that, in our experiments, running more ADMM iterations eventually

led to performance degradation, even after an extensive hyperparameter

search and optimizer tuning.

• `2 Regularization (Weight Decay): We used the weight decay option

of the Adam optimizer in Pytorch. We performed a grid search over the

values λ`2 = [0, 0.1, 1, 5, 10, 100], each run for 100 epochs, and chose the

best on the validation set The search was performed for each dataset in

Table 1. For VAE, the best performance was obtained with we λ`2 = 0.1

in the Letter dataset, λ`2 = 1 in the Adult dataset and λ`2 = 10 in the

Wine and Credit Default datasets. For the conditional predictors, the best

performance was obtained for λ`2 = 1 in Adult, Credit default and Letter

datasets, and λ`2 = 5 in the Wine dataset. For RVAE-CVI and RVAE-AVI

no regularization was needed.

• Categorical Encoding: VAE, RVAE and CondPred models we used

categorical embedding matrices to codify the categorical features at the input

level of the encoder. The dimensionality used in all experiments was size 50,

as it provided generally good results. For CondPred, embeddings were not

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 104

shared between individual feature predictors. In the case of DeepRPCA we

had to use one-hot encoding, as this was the only way to make the ADMM

procedure to work properly, given the projection step (using proximity

operator). This relies on subtracting the noise matrix S from the data

matrix X, which is non-trivial using embedding representations. One-hot

encoding is standard in PCA-type models when dealing with categorical

features.

• DeepRPCA hyperparameter: The coefficient that regulates how many of

the data-points (cells) will be represented by sparse matrix S was chosen from

the range λ = [0.001, 0.01, 0.1, 1]. The best outlier detection performance

was obtained for 0.01 in Wine and Adult datasets and 0.1 in Credit Default

and Letter datasets.

• RVAE (hyperparameters): The value for the prior probability α was set

to 0.95 throughout (it is fair to assume in general that most of the data

is clean). A full evaluation on its effect on the performance of the model

was conducted in the main text. In the case of the hyperparameter S of

the outlier model for real features, we used 2 throughout, with good results.

This was the setting used for all RVAE-based models in the experiment

section, and the validation set was not employed at any time while selecting

parameters.

• Encoder of the weights for RVAE-AVI: We used a feed-forward neural

network with the same architecture as the one specified above for the

encoder of VAE, which parameterizes the variational distribution of the

latent space. In this case the πτ d(x)’s are parameterized directly by a neural

network, where τ defines the neural network parameters (see Algorithm 1).

An intermediate hidden layer of size 400 was used. Hence, no coordinate

optimization procedure was performed.

3.7.3.2 OC-SVM

We use a scikit-learn implementation, with RBF (radial basis function) kernel.

We conducted an hyperparameter search on both ν and γ, from 0 to 1 in intervals

of 0.1. The best performance for all the datasets was obtained with ν = 0.2 and

γ = 0.1, on the validation set.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 105

3.7.3.3 Marginal Method

The Marginal method has no hyperparameters to tune, apart from the maximum

number of Gaussian Mixture Model components that can be selected by BIC score.

We found a maximum of 40 components to be sufficient.

3.7.3.4 OCSVM + Marginals Method

We employed a combination of both the OCSVM and Marginals implementations

described above. The parameters were selected based on the previous details

(ν = 0.2,γ = 0.1 and maximum number of components of the GMM set to 40).

3.7.3.5 Isolation Forest

We use scikit-learn implementation. A maximum number of samples of 50% of the

size of the datasets, and a contamination parameter of 0.2 seemed to work best for

all the scenarios. Again, these parameters were selected using the validation set.

3.7.3.6 Timing Information on Models

The linear models (OCSVM, Marginals) and Isolation Forest in this chapter have

a computing time in terms of a few minutes in a desktop CPU (3 GHz) with

8GB of memory. For instance, Isolation Forest or OCSVM can take about 3-8

minutes depending on the size of the dataset, and usually Isolation Forest takes

more time. The model OCSVM + Marginals usually takes a couple more minutes

than the other simpler models, since both linear models have to be trained, and

then include Platt scaling for the OCSVM score.

The deep learning models take significantly longer than the standard models

above-mentioned. The VAE and RVAE models take an order of magnitude more

than the standard ones. Using a desktop CPU with 8 GHz it can take about 40

minutes for RVAE, which can be longer depending on the size of the dataset. Using

a GPU (GeForce TITAN X) we can reach a lower computing time of about 10-20

minutes. DeepRPCA will take longer when using a GPU at about 35 minutes,

since the ADMM procedure overall is costly. The most expensive model in terms

of computation time is CondPred and is strongly dependent on the dimensionality

of the dataset (number of features), since for each feature an additional neural

network model is trained. For the experiments carried out, CondPred can easily

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 106

Figure 3.8: Row and cell outlier detection scores on Wine dataset in 5 different cells

corruption levels. Upper figure shows the AVPR at row level. Lower figure shows the

AVPR at cell level.

take two times as long as VAE and RVAE models. Generally, it can take up to an

hour sometimes when using a GPU.

3.8 Additional Results

The purpose of this section is to provide a complement of results to the main

results sections (Sections 3.6.5 and 3.6.6) and show the reader the complete set

of experiments. As such, we present additional figures for the experiments carried

out in this chapter.

3.8.1 Outlier detection additional details

In this section, we present the full disclosure of all the models in both row and cell

outlier detection in each of the datasets of the experiments, in Figures 3.8-3.11

Notice that RVAE-CVI is stable across datasets and noise corruption levels,

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 107

Figure 3.9: Row and cell outlier detection scores on Adult dataset in 5 different cells

corruption levels. Upper figure shows the AVPR at row level. Lower figure shows the

AVPR at cell level.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 108

Figure 3.10: Row and cell outlier detection scores on Credit default dataset in 5

different cells corruption levels. Upper figure shows the AVPR at row level. Lower

figure shows the AVPR at cell level.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 109

Figure 3.11: Row and cell outlier detection scores on Letter dataset in 5 different cells

corruption levels. Upper figure shows the AVPR at row level. Lower figure shows the

AVPR at cell level.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 110

Figure 3.12: Repair performance on the dirty cells of all models for each datasets

while other models suffer in some specific datasets for either row or cell outlier

detection.

3.8.2 Repair additional details

In this section, we present the full disclosure of all the models in while repairing

dirty cells in each of the datasets of the experiments, in Figure 3.12. RVAE-CVI

performs better than the other methods for low level corruption, except for the

adult dataset where RVAE-CVI and the conditional predictor are equivalent and

the Letter dataset, where the conditional predictor does slightly better.

3.8.3 RVAE-CVI vs RVAE-AVI

We present here the AVPR evolution of RVAE-CVI and RVAE-AVI for each

dataset and all noise corruption levels. RVAE-CVI outperforms RVAE-AVI in all

datasets in both cell and row outlier detection, obtaining a similar performance

only for the Letter dataset.

Additionally, in Figure 3.14 we show the difference in repair performance of the

dirty cells for both models. We can observe that RVAE-CVI performs better than

RVAE-AVI for all datasets and noise corruption levels.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 111

Figure 3.13: Comparison between RVAE-CVI and RVAE-AVI for each dataset in row

outlier detection (left figures) and cell outlier detection (right figures)

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 112

Figure 3.14: Comparison between RVAE-CVI and RVAE-AVI for each dataset in repair

of dirty dells. The lower SMSE the better.

3.8.4 Different noise processes additional details

In this section we present all the results in row and cell outlier detection and

repair for all six combinations of noise processes, which are:

• Gaussian noise (µ = 0, η = 5σ̂d), Tempered Categorical (β = 0)

• Laplace noise (µ = 0, η = 4σ̂d), Tempered Categorical (β = 0.5)

• Laplace noise (µ = 0, η = 4σ̂d), Tempered Categorical (β = 0.8)

• Laplace noise (µ = 0, η = 8σ̂d), Tempered Categorical (β = 0.8)

• Log normal noise (µ = 0, η = 0.75σ̂d), Tempered Categorical (β = 0)

• Mixture of two Gaussian noise components (µ1 = −0.5, η1 = 3σ̂d, with

probability 0.6 and µ2 = 0.5, η2 = 3σ̂d with probability 0.4), Tempered

Categorical (β = 0)

Figures 3.15-3.17 show a disclosure of the full results on all noise processes across

the different models for both row and cell outlier detection and repair.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 113

Figure 3.15: Row outlier detection across all models and noise processes, averaging

all datasets

Figure 3.16: Cell outlier detection across all models and noise processes, averaging all

datasets

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 114

Figure 3.17: Repair of dirty cells across all models and noise processes, averaging all

datasets

3.8.5 Error Bars per Noise Level

Here, we show results for VAE, RVAE and CondPred with error bars provided

for each noise level. The error bars were obtained by generating five independent

instances of corruption – randomly corrupting different cells in the dataset each

time. The corruption process is the same as in Section 3.6.5. The inference

mechanism for repair is MAP like in Section 3.6.6. We report the results both

for outlier detection and repair (Figure 3.18). In lower noise levels, the standard

deviation tends to be higher, more significantly in repair (last row, Figure 3.18).

Since fewer cells are affected at lower noise levels, this leads to more diverse

behaviours in repair and outlier detection, and thus to larger error bar.

We can see that the main conclusions about the ”ranking” of our method against

baselines still holds in either outlier detection or repair. Further, in repair, in the

two lowest noise levels RVAE (MAP) seems to less dependent on the corrupted

cells (see Adult and Credit Default figures, in Figure 3.18).

To further complete this analysis, we provide in Table 3.2 the p-values computed

from an independent t-test between RVAE, VAE and CondPred. These were

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 115

Figure 3.18: Plots with error-bars for each dataset (column), using 5 different instances

of corruption, at each corruption level (x-axis). We show cell outlier detection (upper

row), row outlier detection (middle row) and repair (lower row).

averaged across datasets and noise levels.

avg. p-values avg. p-values

RVAE vs CondPred RVAE vs VAE

Cell AVPR 0.121 0.070

Row AVPR 0.040 0.227

Repair SMSE 0.025 0.013

Table 3.2: Independent t-test between RVAE, VAE and CondPred. If p-values in range

0.05-0.10 assume that models have different performance.

3.8.6 Different Outlier Detection Task: RVAE vs ABDA

In this section we compare RVAE to ABDA (Vergari et al., 2019), a recent

algorithm employed both in outlier detection and missing data imputation. We

followed the details in the outlier detection section of the ABDA paper and

compare RVAE with ABDA in terms of row AUC ROC as used therein (we use

the results reported by the ABDA authors). Table 3.3 shows that we perform

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 116

Dataset AUC RVAE AUC ABDA

Letter 0.8359 0.7036

Breast 0.9815 0.9836

Pen Global 0.9316 0.8987

Pen Local 0.9053 0.9086

Satellite 0.9460 0.9455

Thyroid 0.8211 0.8488

Shuttle 0.9985 0.7861

Aloi 0.5515 0.4720

Speech 0.5584 0.4696

KDD 0.9993 0.9979

Average 0.8529 0.8014

Table 3.3: Comparison between RVAE and ABDA in row AUC ROC for 10 different

datasets.

better in average than ABDA, with 7 out 10 cases being better in outlier detection.

Notice that, the noising scenarios for these datasets (described in (Goldstein &

Uchida, 2016)) are based of standard row outlier detection, where one or some

classes are considered normal while another class or classes are considered outliers.

This scenario is completely different to the scenarios described in this chapter. In

our work, we assume that some cells in the data corrupt several rows in a tabular

dataset, and we need to detect and correct them. These experiments showcase

the robustness of RVAE to a different outlier detection process.

3.8.7 Different Inference Method

In this section, we compare the MAP inference (reconstruction, eq. 3.14) for

VAEs employed throughout the chapter with more powerful inference meth-

ods (Figure 3.19). In particular, we provide results for pseudo-Gibbs sampling,

(see Rezende et al., 2014, section F), applying it on a trained RVAE at evaluation

time. The final repair estimate was provided after running the MCMC proce-

dure for T = 5 iterations (samples), since larger values of T provided marginal

improvements. We used the same scenarios of Sections 3.6.5 and 3.6.6.

A mask removing anomalous entries needs to be either defined, or inferred. We

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 117

Figure 3.19: Comparison between MAP, OneStage, TwoStage inference methods in

terms of both row / cell outlier detection, and repair.

Figure 3.20: Comparison between MAP, OneStage, TwoStage, CondPred inference

methods in terms of both row / cell outlier detection, and repair. Results for each

dataset.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 118

provide two options to do this automatically:

• OneStage (Algorithm 2): Treat all cells in a row as anomalous and perform

pseudo-Gibbs, for T iterations. Final repair value is line 6 of Algorithm 2,

and outlier detection is line 8.

• TwoStage (Algorithm 3): Use OneStage, obtaining a more stable estimate

of πd, then sample mask wd using it to perform pseudo-Gibbs (as described

in (Rezende et al., 2014)). The assumed clean cells (i.e. wd = 1) have their

value xd fixed throughout the MCMC chain (of T iterations). Meanwhile

cells that are dirty are initialized with mean behaviour imputation, i.e. x̄d

(Algorithm 3, line 4). For continuous features since our data is standardized

(µ̂d = 0), so we use 0. For categorical features, given our VAE models

use normalized (word) embeddings, we use vectors of the same dimension

with zeros – such strategy has been applied for imputation when using

embeddings. Final repair value is line 8 of Algorithm 3, and outlier detection

is in line 2 (i.e. π̂ from OneStage).

Note that in the OneStage method the mask w is not inferred, while in TwoStage

it is. In addition, we remind the reader that x is the observed row, which can be

clean or dirty.

Figure 3.19 shows that there were gains on average in outlier detection and repair

using TwoStage, particularly for repair at low noise levels. These are still close to

MAP, specifically in the case of higher noising levels.

For completion, we disclose in Figure 3.20 the comparison across the inference

methods per dataset. In general, we can see that TwoStage has better repair

performance (last row of Figure 3.20), particularly in low level noise.

Lastly, other methods like (Mattei & Frellsen, 2019) could also have been used to

improve repair. However, more powerful inference schemes can sometimes lead to

overfitting to noise. On the other hand, inference schemes like MCMC (vs MAP)

can provide more stable solutions (lower error bars), particularly in lower noise

levels or in smaller datasets (number of rows).

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 119

Algorithm 2 OneStage: pseudo-Gibbs sampling

1: procedure OneStage(T , fixed {φ, θ})
2: x(1) = x

3: for 1, ..., T do

4: z(t+1) ∼ qφ(z|x(t))

5: x̃(t+1) ∼ pθ(x|z(t+1))

6: x̂ = x̃(T+1) . for repair

7: ẑ = z(T+1)

8: π̂d = g
(
r(xd, ẑ) + log α

1−α

)
. eq. (3.10), outlier detection

9: return (x̂, ẑ, π̂)

Algorithm 3 TwoStage: pseudo-Gibbs sampling

1: procedure TwoStage(T , fixed {φ, θ})
2: (x̂, ẑ, π̂) ← OneStage(T ,{φ, θ})
3: ŵd ∼ qπ̂d(wd)

4: x
(1)
d = ŵd × xd + (1− ŵd)× x̄d

5: for 1, ..., T do

6: z(t+1) ∼ qφ(z|x(t))

7: x̃(t+1) ∼ pθ(x|z(t+1))

8: x̂d = ŵd × xd + (1− ŵd)× x̃(T+1)
d

9: ẑ = z(T+1)

10: return (x̂, ẑ, π̂)

3.9 Concluding Remarks

In this chapter RVAE has been presented, a deep unsupervised model for cell outlier

detection and repair in mixed-type tabular data. RVAE allows robust identification

of outliers during training, reducing their contribution to parameter learning.

Furthermore, a novel row outlier score for mixed-type features was introduced.

RVAE outperforms or matches competing models for outlier detection and dirty

cell repair, even though they heavily rely on fine-tuning of hyperparameters by

using a labelled validation set.

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 120

3.9.1 Advantages and Disadvantages

In summary, a list of advantages related to this chapter and the proposed model

(RVAE) is given below:

• Simple and tractable. RVAE uses gradient-based training in mini-batches,

which is tractable for large datasets. The model can be easily implemented

in any differentiable programming framework used in deep learning, only

decoder structure is different compared to standard VAEs. In fact, different

neural network architectures (e.g. convolutional NNs, self-attention, cap-

sules) can be combined with RVAE. It can be used off-the-shelf in initial

data exploration without substantial user intervention.

• Robust to hyperparameter fine-tuning, for moderate corruption.

If the model is faced with corruption up to a moderate amount then hyper-

parameter tunning on α is not needed, unlike competitor methods. Though

in higher levels of corruption, or when systematic errors are present, the

hyperparameter α can be tuned.

• Interpretable outlier detection The RVAE allows the user to use the

outlier scores for each cell to perform detection, but also to interpret why

that instance is an outlier. This is particularly useful in higher dimension

dataset. Few models provide a way to highlight the cells that are to blame

for outlierness.

• End-to-end data cleaning RVAE provides a practical solution to the

problem of cleaning a dataset that has been corrupted. It provides both

outlier detection and data repair in one model, and thus the user does not

have to resort or train additional methods. It is an end-to-end solution to

data cleaning.

• Representation learning for clean data RVAE like any other VAE

during training learns a smaller latent representation that encodes the

characteristics of the entire dataset. Looking at the RVAE formulation (see

Section 3.5) only the clean component is modelled by an autoencoder neural

network. Indeed, the AE model parameters θ (decoder) and φ (encoder) are

only part of the clean component; being that the outlier component is a

static distribution. If RVAE is successful then the AE neural network learns

to map an outlier instance to a repaired (or underlying inlier) instance at

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 121

reconstruction – i.e. the repair process in eq. 3.14. Moreover, as discussed

in Section 3.5 (near equation 3.7) the gradients of an outlier will be down-

weighted in the dirty cells in order to minimize its influence during AE

training. In fact, as stated before, due to the gradient backpropagation rule

if the gradients of θ (decoder) are down-weighted, so will be the gradients of

φ (encoder) with respect to the ELBO loss. Even though the encoder sees

both inlier and outlier instances, its parameters are mostly affected by clean

cells if RVAE is successfully trained. Therefore, much like a Denoising AE

(DAE) (Vincent et al., 2010) the RVAE model will map outlier instances

to repaired (inlier) instances. However, a DAE will need paired inlier and

outlier samples for training, whilst RVAE does not. Typically, a DAE will

map both outlier and underlying inlier instances to the same neighborhood

in the latent space (Shen et al., 2019). Thus learning an idealized latent

representation of the underlying clean data. If a trained RVAE can repair

the dataset properly, then it is possible that it may learn this idealized

latent representation as well. This latent representation could then be used

in downstream tasks for the dataset in question, which we leave for future

work.

Some relevant disadvantages are listed below:

• Threshold setting for row and cell scores. In this chapter, by using a

metric like AVPR for outlier detection evaluation, it was proven that RVAE

anomaly scores have great performance. However, like the vast majority of

outlier detection models thresholds have to be set in order to detect corrupt

cells or instances in practice. This can be accomplished by using a small

labelled validation set, or much more commonly by the user directly setting

it.

• Traditional outlier detection only. If the task is just traditional outlier

detection, and a labelled validation set is given, then other methods might

be more relevant than RVAE as a first try. Other methods may have faster

training times, and are easier to deploy (e.g. standard software packages).

Though, one of the advantages of RVAE is that validation sets are not

needed for most scenarios. Most outlier detection methods lack cell level

interpretability like RVAE, but that may not always be necessary if the user

is subject-matter expert and data is not high-dimensional. Moreover, it is

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 122

possible other recent SOTA methods for traditional outlier detection may

have better performance.

• Complexity of deep architectures. Deep learning models unlike classic

outlier detection methods need to search for the most appropriate neural

architecture for the task. In this case, deep learning may add another layer

of complexity, which the user may need to consider. This also applies to

RVAE, and other deep VAE models.

• Corruption by systematic errors. The RVAE model was mainly de-

signed to handle random errors, and may handle a low amount of systematic

errors. In fact, the noise process given by a mixture of two Gaussian compo-

nents (see Section 3.8.4) does introduce a systematic error corruption, and

RVAE still has good performance. However, early exploration into the issue

indicated that systematic errors in higher amounts lead to overfitting to

corruption much more easily. Tackling high corruption by systematic errors

is virtually impossible without supervision, or some other prior knowledge

embedded into the model. The only option here is to increase the strength

of data reweighting, or regularization, hence diminishing the contribution of

potential outliers to the modelling of inliers. In RVAE this corresponds to

decreasing the value of hyperparameter α, meaning that we now assume the

dataset is more corrupt. This will increase outlier detection performance

to a point, but at substantial cost for data repair performance with loss of

detail for repairs. Indeed, the model starts to collapse to mean behavior,

e.g. blurred image reconstructions.

• Outlier component model for other types of categorical features.

In this work the outlier component p0 of the RVAE for categorical features

was defined as a uniform distribution. Although this seems to work quite

well in our experiments, for ordinal features this is probably not optimal.

Note that ordinal features are a sub-type of categorical features, where a

clear ordering of the categories exists. Count data features is a good example,

where a Poisson likelihood could have been used. Other likelihoods could

also be specified for the case where a hierarchical dependency exists between

the categories of the feature.

• Exploring RVAE in Image Data. One thing unexplored in this work

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 123

was image data, which is left as future work. It is possible the outlier

component p0 may need some slight change or improvement, but overall the

p0 in eq. (3.9) should be a good starting point.

3.9.2 Comparing to a Recent Model: Picket

After RVAE was released to the public, the recent work in Liu et al. (2020) (Picket)

has used our model as a baseline in random, systematic, and adversarial error

settings. The task was that of traditional outlier detection, i.e. detecting corrupt

rows.

The RVAE did not do well with adversarial errors generally. It did decently

well as far as random errors are concerned. For moderate to high corruption

with systematic errors, the RVAE clearly registered worse performance than

the proposed model therein. However, for small to moderate corruption with

systematic errors RVAE actually did surprisingly good (seen in the appendix).

However, note that in Liu et al. (2020) the authors did not actually tune α, and

just used the proposed value of 0.95 from this chapter. This was meant for random

errors and up to moderate corruption levels. As hinted above when dealing with

systematic errors, and very high corruption, there is a benefit to decreasing the

value α. This probably would have improved RVAE performance for systematic

error detection.

Interestingly in Picket (Liu et al., 2020) some real-world examples of corruption in

data are used in the experiments where RVAE is a baseline. In one case datasets

(i.e. Titanic, Restaurant) are injected with real-world common examples of error

corruption. On the other hand, Food is a real-world example of a dataset that

already presents error corruption, and where the ground-truth (outliers) is known.

Hence, no corruption injection is needed. In Figure 8 of Liu et al. (2020) the

performance of all models is measured on the task of traditional outlier detection.

In this particular case, RVAE performs well in Restaurant dataset and close to the

Picket model, which is better. In the Titanic dataset RVAE performance is erratic,

presenting large error bounds. Lastly, all models have mediocre performance in

the Food dataset. In Table 22 of Liu et al. (2020) the performance of all models

including RVAE is measured on the ability to filter out outliers, with the purpose

of improving the training of a downstream task. It is shown in the experiments

that removing the outliers from the training dataset has indeed a positive impact

Chapter 3. Robust VAEs for Outlier Detection and Repair of Mixed-Type Data 124

on the downstream task accuracy. In Table 22 the RVAE model registers good

overall performance and close to Picket. In fact, in the Titanic dataset it is the

best performing model.

Chapter 4

Repairing Systematic Outliers via

Clean Subspace VAEs

4.1 Motivation: How does it fit into the thesis?

The main motivation behind this model proposal was dealing with systematic errors

in data cleaning. These are corruption-based outliers, and exist within the scope

of point outliers (see Section 2.2.1). These errors are notoriously difficult to deal

with because they can easily be learnt as clean data. Unlike random errors they

present a clear repeatable structure throughout the dataset, since they result

from nearly deterministic corruption transformations (plus potentially some noise).

Consequently, models with enough capacity easily overfit to these errors, making

both outlier detection and data repair difficult. Having said that, our goal is to

define a generative model that performs outlier detection and data repair with

very little user intervention (automating as much as possible).

Since the model needs to provide high quality data repair, the choice was to

develop a novel generative model (a VAE) for the purpose. Since it is difficult

to isolate these types of outliers using unsupervised models, we propose some

user interaction in the form of semi-supervision. Given we want to limit this

we focus on the user only labelling a few examples, particularly those types of

outliers (systematic errors) that needs to be repaired. We feel this is far more

practical than using rule-based or pattern-based approaches, since these often

require expert knowledge or some external source.

125

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 126

Seeing as a systematic outlier is a combination of patterns of a clean instance

and systematic error patterns, our main insight is that inliers can be modelled

by a smaller representation (subspace) in a model than outliers. By exploiting

this, we propose the Clean Subspace Variational Autoencoder (CLSVAE), a novel

semi-supervised model for detection and automated repair of systematic errors.

The main idea is to partition the latent space and model inlier and outlier patterns

separately.

CLSVAE is effective with much less labelled data compared to previous related

models, often with less than 2% of the data. We provide experiments using three

image datasets in scenarios with different levels of corruption and labelled set

sizes, comparing to relevant baselines. CLSVAE provides superior repairs without

human intervention, e.g. with just 0.25% of labelled data we see a relative error

decrease of 58% compared to the closest baseline.

4.2 Introduction

Often practitioners have to deal with dirty datasets before they can start applying

machine learning (ML) models. We focus on datasets where some instances have

been corrupted by noise, producing outliers. The corresponding clean instances

prior to corruption are called inliers, as well as any other instances that have not

been corrupted. Because the presence of outliers can degrade the performance of

ML methods (Krishnan et al., 2016; Liu et al., 2020), a standard option is to resort

to a data cleaning pipeline before applying any model. This pipeline includes

two key tasks: i) outlier detection (Ruff et al., 2021), detecting all outliers; ii)

repair those outlier instances (Neutatz et al., 2021; Wan et al., 2020), recovering

the underlying inlier instance. Ultimately, the goal is to propose a method that

performs these steps automatically, i.e. automatic detection and repair.

Generally, we can consider two types of errors present in an outlier: random

or systematic (Taylor, 1997; Liu et al., 2020). Both in industry and in practice

these type of outliers are most commonly within the scope of point outliers (see

Section 2.2.1). This means we can evaluate whether an instance is an outlier on

its own, without context from other instances (e.g. space proximity, time-series,

connections in a graph). Random errors corrupt each instance independently, and

feature value changes are sampled from an unknown distribution. This noising

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 127

cannot be replicated in a repeatable manner. For continuous features, a common

example of this type of error are those well-modelled by additive noise with

zero-mean. Systematic errors result from deterministic, or nearly deterministic

(potentially with some noise), transformations that occur repeatedly in the data.

Examples of systematic errors include watermarks or deterministic pixel corruption

(e.g. artifacts) in images; additive offsets or replacement by default values (e.g.

NaN) in sensor data; deterministic change of categories (mislabelling) or of name

formats in categorical features in tabular data. Usually, the same features are

affected, but not always. In most cases, this noising can be replicated.

These two types of errors have a different impact when it comes to models

performing detection or repair. Random errors do not show a distinct pattern

across outliers and thus are not predictable. As a result, unsupervised models using

regularization or data reweighting (Zhou & Paffenroth, 2017; Akrami et al., 2019a;

Eduardo et al., 2020) can avoid overfitting to random errors. On the contrary,

a systematic error shows a pattern across outliers, as a result of the (nearly)

deterministic transformation, making them predictable (Liu et al., 2020). This

property makes higher capacity models (e.g. deep learning) prone to overfitting to

these errors, even in the presence of regularization. As a result, models for outlier

detection and repair in the presence of systematic errors more easily conflate

outliers with inliers. In this work we study how to develop a model for data

cleaning robust to the effect of systematic errors.

One solution is to provide some supervision, so the model can distinguish between

inliers and outliers with systematic errors. This supervision can be provided in

different forms, such as logic rules (Rekatsinas et al., 2017) or programs (Lew

et al., 2021) describing the underlying clean data. However, these may require

expert knowledge or substantial effort to formalize. Hence, it is easier and less

time consuming for the practitioner to simply provide a trusted set as form of

supervision. A trusted set is a small labelled subset of the data, which can be

used to train a method for detection and repair. The user labels the instances

either inlier or outlier, providing a few examples (e.g. 10 instances) per type of

systematic error to repair. Overall, this might correspond to less than 2% of the

entire dataset (sparse semi-supervision). Equally important, labelling does not

require the user to manually repair the instances in the trusted set.

Deep generative models (DGM) have high capacity (flexible) and thus can easily

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 128

overfit to systematic errors. This motivates us to propose a method for detection

and repair of such errors based on a semi-supervised DGM, which to the best of our

knowledge has not been explored. We postulate that inlier data needs a smaller

representation relative to outlier data when being represented by DGMs, since

an outlier has more information to model (i.e. underlying inlier and systematic

error). In addition, we claim that outliers are a combination of a representation

describing the inlier portion of an instance, and a representation describing the

type of systematic error.

Given these insights, we propose Clean Subspace Variational Autoencoder (CLSVAE),

a novel semi-supervised model for detection and automated repair of systematic

errors. This model deviates from a standard VAE (Kingma & Welling, 2014), in

two ways. First, the latent representation is partitioned into two subspaces: one

that describes the data if it were an inlier (clean subspace), and the other that

describes what systematic error (if any) has been applied (dirty subspace). The

model is encouraged to learn a disentangled representation using a simple yet

effective approach: for outliers the decoder will use a clean subspace concatenated

with the dirty subspace; in turn, for inliers the decoder will reuse the same clean

subspace but concatenated with random noise. Then, at repair time the decoder

will only need the clean subspace to reconstruct the underlying inlier. Secondly,

we introduce semi-supervision through a trusted set, in so helping the model

distinguish between inliers and outliers with systematic errors. Additionally, to

encourage the clean subspace to represent inlier data, and the dirty subspace

to represent systematic errors, we introduce a novel penalty term minimizing

their mutual information (MI). This penalty is based on the distance correlation

(DC) (Székely et al., 2007), and it improves model performance (stability) and

repair quality. Compared to baselines we provide superior repairs, particularly,

we show significant advantage in smaller trusted sets or when more of the dataset

is corrupted.

4.3 Related Work

For random errors, several works have explored detection (Akrami et al., 2019a;

Ruff et al., 2019; Liu et al., 2020; Lai et al., 2019). Some have proposed methods

for detection and automated repair of random errors (Eduardo et al., 2020; Zhou

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 129

& Paffenroth, 2017; Krishnan et al., 2016). A few works have explored outlier

detection for systematic outliers, both semi-supervised (Ruff et al., 2019) and

unsupervised (Liu et al., 2020; Lai et al., 2020), but these works do not consider

automated repair. In all these works, the main focus has been point outliers

(Section 2.2.1) as this is the most common type in practice.

For tabular data, methods have been proposed that can do repair after detection

has been performed; for an overview, see (Ilyas & Chu, 2019; Chu et al., 2016).

These use probabilistic models melded with logic rules, i.e. probabilistic relational

models (Rekatsinas et al., 2017), or user-written programmatic descriptions of

the data, e.g. in a probabilistic programming language (Lew et al., 2021). They

have the potential to capture systematic errors. However, these require the user

to provide rules or programs that characterize clean data, which requires manual

effort and expertise. In contrast, labelling a few inlier and outlier instances to

build a trusted set may be more user-friendly.

The idea of using unsupervised models for outlier detection is not new (Schölkopf

et al., 1999; Liu et al., 2008). Unsupervised removal from a dataset of a small

fraction of instances suspected of being outliers has been explored in Koh et al.

(2018); Diakonikolas et al. (2018); Liu et al. (2020), when used against adversarial

errors it is called data sanitization (Koh et al., 2018). However, if one wants

to repair existing dirty data, a common unsupervised approach for moderate

corruption is to apply enough regularization or data reweighting to an autoencoder

(Eduardo et al., 2020; Zhou & Paffenroth, 2017; Akrami et al., 2019a), hopefully

repairing the errors at reconstruction. This has proven successful for random

errors, though as we show, this is less effective for systematic errors. Often

regularization is too strong leading to bad repair quality, since reconstruction is

collapsing to mean behaviour – e.g. blurry image samples, missing details.

Attribute manipulation models (Klys et al., 2018; Choi et al., 2020) usually rely

on extensive labelled data, usually fully supervised. Data cleaning can be seen

as an attribute manipulation problem with one attribute: either the instance is

an inlier or outlier. Some models like CVAE (Sohn et al., 2015) may use discrete

latent variables, instead of continuous, to model attributes. These may lack the

capacity to capture diversity in the same attribute (Joy et al., 2020), e.g. distinct

types of systematic errors in the data, and thus offer a poor fit to the data. Later,

this may result in poor repair.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 130

Disentanglement models, unsupervised (Locatello et al., 2019b; Tonolini et al.,

2019) and semi-supervised (Ilse et al., 2020; Locatello et al., 2019b; Joy et al.,

2020), encourage individual (or set of) continuous latent variables to capture

different attributes of the data instances. More in-depth discussion about these

models can be found in Section 2.5.4. In theory, a disentanglement model could

isolate the inlier / outlier attribute into a latent variable, then after training one

could find a value for this variable that repairs the outlier. In practice, this is

much simpler with semi-supervised models, since we know which variable (or set

of) corresponds the attribute, but these tend to use more labelled data than we

consider. In either case, these models usually need additional processing, often

requiring human in the loop to explore the latent variable and find the best repair.

Conversely, once our model is trained, further human intervention is not needed,

so that repair is automated.

More specifically, there have been (semi-)supervised disentanglement models (Klys

et al., 2018; Ilse et al., 2020; Joy et al., 2020; Locatello et al., 2019b) that segregate

the latent space in order to model particular attributes. Once more, further

discussion on these is found in Section 2.5.4, where a SOTA model of this type

(CCVAE, (Joy et al., 2020)) is discussed in detail (see Section 2.5.4.1). Generally,

these models use the same latent subspace to model some attribute y. In this case

both inliers (y = 1) and the systematic error patterns of outliers (y = 0). The

remainder of the latent space is left to model unlabelled attributes of the data.

This type of modelling is usually geared toward general disentanglement of data

attributes, and not data instance repair.

The proposed CLSVAE model also segregates the latent space. However, unlike

the other models, it expresses an inductive bias related to the problem of corrupted

data, which improves the disentanglement in latent space of (underlying) inlier and

error patterns. The CLSVAE splits the latent space in two: one subspace models

inlier patterns (y = 1); and the other subspace models systematic error patterns

(y = 0). Furthermore, CLSVAE defines a specific neural network encoder for each

subspace, such that inlier and error patterns do not share network parameters.

We found this to lead to better repair performance. On the other hand, other

disentanglement models typically share the same neural encoder.

CLSVAE exploits the fact that inliers are numerous and appear in the dataset

uncorrupted; and thus these can be directly modelled by one subspace during

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 131

training. This architectural bias can improve disentanglement, since for the less

common outliers an additional subspace is used for error information. Seeing this

is not always stable with very small trusted sets, a penalty loss based on distance

correlation is used to minimize mutual information between subspaces. Conversely,

the other models always assume every instance needs to be disentangled (inliers

from errors); and thus do not exploit the fact inliers are frequent and appear

without errors. We believe this issue is further compounded in other models by

the use of the same subspace for inliers and errors, and the sharing of encoder

neural network. Although with a large enough trusted set some of these models

can have good performance, in this chapter we focus on very small trusted sets.

Therefore such inductive biases as provided by CLSVAE for this problem are quite

important for performance.

4.4 Problem Definition

We assume the user knows that systematic errors have corrupted dataset X , and

thus outliers exist therein, but the inliers are still the majority. The user also has

an idea of what patterns constitute systematic errors, and is able to recognize

them. Intuitively, we think of inlier data being characterized by a set of patterns,

which we call clean patterns, and those that constitute (systematic) errors, called

dirty patterns. An outlier is an instance that has been corrupted by systematic

errors, where prior to that would be constituted by clean patterns only. Formally,

for x̃ an underlying inlier instance, an outlier is defined by x = fcr(x̃). We define

fcr as a general transformation that corrupts the inlier instance with systematic

errors, and not necessarily invertible. Each type of systematic error usually affects

specific features of x̃ in the same predictable way, repeatedly in the dataset. This

is unlike random errors, which both the feature and changed values are at random

throughout instances. The type of outliers described here are point outliers (see

Section 2.2.1), and that is the focus of this thesis.

The user builds a small trusted set by labelling a few of the inliers and outliers

in the train set X , forming the labelled subset Xl = {xn}Nl
n=1. So we have the

dirty dataset X = Xl ∪ Xu , where Xu = {xn}Nu
n=1 is the unlabelled part. The

overall size of the train set is N = Nl + Nu . Each xn ∈ Xl is associated with a

label yn ∈ {0, 1}, which indicates whether xn is an inlier (yn = 1) or an outlier

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 132

(yn = 0). We write Yl = {yn}Nl
n=1 and thus the trusted set is formally defined

by (Xl ,Yl). The trusted set should be representative of the inliers and outliers

in the data. Note that there is a set of different corrupting transformations, i.e.

systematic error types, each applied to several instances. Hence, the trusted set

should provide at least a few labelled samples per type of systematic error. This

is important so as to help the model distinguish between inliers and outliers. In

our problem, the labelled portion of the dataset Xl (trusted set) is significantly

smaller than the unlabelled portion Xu , e.g. 0.5% of Nu . Given how small the

trusted set is, we refer to this as sparse semi-supervision.

In this work, the main task is to first perform outlier detection on X , in order to

discover y for each instance x. The second task is repair those instances that are

considered to be outliers (y = 0). Specifically, the model needs to provide a repair

transformation gr such that x̂ = gr(x) where x̂ ≈ x̃ (i.e. repair is close enough to

the underlying inlier instance). Thus, we want a model that performs these two

steps automatically, i.e. without a human in the loop.

4.5 Proposal: Clean Subspace VAE (CLSVAE)

In this section, we introduce the generative and variational models for our proposal.

Our Variational Autoencoder (VAE) model is motivated by three observations:

• Outliers are systematic. Outlier instances can be described by a number

of predictable recurring patterns, some of which are considered dirty (e.g.

black patch on an image). Our assumption is that the latter patterns can

be well represented by a DGM.

• Subspace hypothesis. Outliers are composed of the underlying inlier and

the transformation (error) that made it an outlier. Since we are trying to

capture more information in our representation for outliers, a larger latent

space in a DGM is needed. Conversely, the inlier data can thus be modelled

using a subspace of the overall latent space.

• Outliers are a combination of clean and dirty patterns. Because

clean and dirty patterns produce different visible effects in the instance, the

effects of clean and dirty patterns can be modelled separately. Hence, this

DGM only requires the parameters (or variables) of the clean patterns to

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 133

generate a repair. Note that this assumption is valid for corruption-based

outliers, in particular for systematic errors.

We call our model the sparse semi-supervised Clean Subspace VAE (CLSVAE).

This reflects the fact that our model has a partitioned latent space: a subspace

for clean patterns, and a subspace for dirty patterns. Thus at test time only the

subspace for clean patterns is used to generate a repair. A standard VAE (Kingma

& Welling, 2014), with weight decay, is provided in section 2.5.2.1 for readers

unfamiliar with this type of model.

Additional Details

We note to our reader that the above assumption on outliers being a combination

of clean and dirty patterns only applies to corruption-based outliers (see Section

2.2.1, some examples are presented). Specifically, we consider systematic error

corruption where the anomalous pattern can be learnt or predicted (Liu et al., 2020;

Krishnan et al., 2016; Lew et al., 2021). This means that in a DGM potentially the

errors can be modelled separately from the patterns that constitute the underlying

inlier of that instance. However, there are many outliers that present a structured

or systematic behavior, and are not a combination of clean and dirty patterns. For

instance, all outliers that are structured but are not originated by error corruption

affecting part of the data features. Some examples of these outliers can be found

in out-of-distribution outliers Yang et al. (2021), and in anomalous data classes

that sometimes populate datasets (Ruff et al., 2019; Diakonikolas et al., 2018).

Further discussion on outlier types can be found in Section 2.2.1.

4.5.1 Generative Model

The main idea is that inlier samples (y = 1) will have a smaller representation

relative to outliers (y = 0), since outliers need an extra representation to model

errors. This follows from the observations made earlier in Section 4.5. In our

model, zc will represent inliers, zd will represent the error pattern for outliers, and

zε is random noise. The overall latent code is z = [zc; y zε + (1− y) zd], where

[;] defines vector concatenation, leading to a latent space that is partitioned into

two subspaces. If generating an inlier (y = 1) then zc ∈ Rq is by itself responsible

for modelling all the clean patterns present in an instance, encouraging a lower

dimensional manifold for inlier data. This is due to zε being a random noise vector

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 134

of the same dimension as zd ∈ Rp, devoid of additional information. If generating

an outlier (y = 0) both zc and zd are used, where zd models the different types

of dirty patterns that can be detected in an instance. In fact, using zε during

inlier generation encourages zd to model dirty patterns only, encouraging a higher

dimensional manifold for outlier data.

Our generative model is therefore defined by the joint distribution between y and

latent subspaces zc and zd. The main idea expressed above can be written as a

two component mixture model for the decoder, see eq. (4.4), where y is the gating

variable. Hence we have

pθ(x, zc, zd, zε, y) = pθ(x|zc, zd, zε, y)pσc(zc)pσd(zd)pσε(zε)pα(y), (4.1)

where

pα(y) = Bernoulli(y|α), (4.2)

pσc(zc) = N (zc|0, σ2
cI) pσd(zd) = N (zd|0, σ2

dI) pσε(zε) = N (zε|0, σ2
εI), (4.3)

pθ(x|zc, zd, zε, y) = pθ(x| [zc; zε])ypθ(x| [zc; zd])(1−y), (4.4)

where the density pθ(x | [·; ·]) is parameterized by a neural network. We assume

inlier data has a smaller variance as whole than outlier data, so we use a σc that

is smaller than σd, e.g. smaller by an order of magnitude. Further, zε is just low

level Gaussian random noise with an order of magnitude similar to σc. Hence,

after training, the region around 0 (zero mean) for this latent subspace encourages

pθ(x | [·; ·]) to only use zc for reconstruction, obtaining a repaired instance. The

parameter α reflects the prior belief on the fraction of clean data. Smaller values

for α means more data points are rejected when modelling zc, which offers more

robustness. So we have σε, σc, σd and α as hyper-parameters.

Additional Details

One final note should be added about the definition of zε. We tried setting zε = 0

at training, however this did not work as well as setting zε to random noise.

One hypothesis is that using random noise centered at 0 (zero mean) allows to

create a margin (separation) between the neighborhood around zd = 0, and the

zd space that encodes different types of noise present in an instance. As a result,

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 135

this lead to a better distinction by the decoder (generator) between inlier and

outlier representations in zd = 0. This in turn allows for better automatic repair

performance by the model.

Lastly, further discussion on why changing prior variance values (i.e. σc and σd)

has an impact on the fully trained model is presented in section 4.6.3.1. We

theorize that stochastic gradient optimization makes degenerate solutions unlikely,

i.e. where σc and σd value changes might be scaled out (made irrelevant) by the

encoder or decoder network weights. Secondly, in section 4.6.5.3, we provide

empirical evidence using a standard VAE that corrupted data has larger variance

than clean data. This means that there is more information to model with

corrupted data (with outliers) than clean data (inliers only). Indeed, we see that

clean data can be better modelled by a standard VAE using a smaller latent space

than corrupted data.

4.5.2 Variational Model

We consider separate encoders for zc and zd, and make y depend on zc and zd.

The idea is that parameters of each encoder focus on different aspects, i.e. clean

or dirty patterns respectively. The model factorizes as

q(zc, zd, zε, y|x) = qφy(y|zc, zd)qφc(zc|x)qφd(zd|x)qσε(zε), (4.5)

and

qφc(zc|x) = N (zc|µφc(x),σ2
φc(x)), qφd(zd|x) = N (zd|µφd(x),σ2

φd
(x)), (4.6)

qφy(y|zc, zd) = Bernoulli(y|πφy([zc; zd]), qσε(zε) = pσε(zε), (4.7)

where for distributions in eq. (4.6): {µφc(.),σφc(.)} is a neural network with

parameters φc; similarly for {µφd(.),σφd(.)} with φd. We have σφc(x) and σφd(x)

being diagonal covariance matrices. The distribution for random noise zε in eq.

(4.7) is the same as in the generative model, see eq. (4.3). Further, in eq. (4.7),

the πφy(.) parametrizes the Bernoulli distribution qφy(y|zc, zd), and is a neural

network with parameters φy.

Additional Details

We found that using qφy(y|zc, zd) – rather than qφy(y|zd) or qφy(y|x) – yielded

better performance in more challenging scenarios, e.g. smaller trusted set or when

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 136

higher data corruption is present. One could have used qφy(y|zd), which works,

but it is still worse than our proposal. This is because zc provides important

context on the clean patterns present in the instance, which in turn allows for zd

to contain less information about clean patterns. Hence, zd is able to focus better

on modelling the dirty patterns, and so the mutual information (MI) between zc

and zd will be lower. Moreover, qφy(y|zc, zd) allows for the cross-entropy loss used

for the trusted set to directly bias the latent space. Unlike when using qφy(y|x)

directly as a neural network. Other works have tried biasing the latent space in

the same fashion as this work, e.g. (Locatello et al., 2019b; Ilse et al., 2020; Joy

et al., 2020).

In practice, in order to stabilize the optimization procedure in some cases, we

used πφy([sg(zc); zd]) in eq. (4.7), i.e. qφy(y|zc, zd) = Bernoulli(y|πφy([sg(zc); zd]).

Note that sg(zc) stands for stop gradient operator applied to zc; and this prevents

zc from being updated with dirty pattern information early on in the training.

By using sg(zc), when executing back-propagation, we prevent the gradients from

qφy(y|zc, zd) to influence the learning of parameters φc. As such, φc will only be

affect by gradients stemming from the reconstruction of inlier instances, and not

the decision on y. In the implementation code of CLSVAE we always used the

stop-gradient operator on zc as it proved to be able to stabilize the convergence of

the training procedure in harsh conditions. These harsh conditions are usually

a combination of i) small trusted sets and ii) high corruption. In all other cases

this was not seen as too necessary, as the benefits to training convergence were

marginal. Hence, it was decided to always use the stop-gradient operator on zc

for all experiments of CLSVAE presented in this chapter.

4.5.3 Training Loss

Our model is trained to maximize an objective function with three terms, which

accounts for our semi-supervised setting. The first term L(x) is the evidence lower

bound (ELBO) for the unlabelled part of the data. The second term L(x, y) is

the ELBO for the trusted set. The third term is based on the negative CWCE(x, y),

where CWCE(x, y) is the weighted cross-entropy loss which ensures that qφy(y|zc, zd)
correctly predicts the trusted set labels y.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 137

The ELBO for the unlabelled (unsupervised) part is

L(x) = Eqφy (y|zc,zd)qφc (zc|x)qφd (zd|x)pσε (zε)

[
log

pθ(x|zc, zd, zε, y)pσc(zc)pσd(zd)pα(y)

qφy(y|zc, zd)qφc(zc|x)qφd(zd|x)

]
,

which can be rewritten as

L(x) =Eqφc (zc|x)qφd (zd|x)pσε (zε)

[
πφy([zc; zd]) log pθ(x| [zc; zε]) (4.8)

+ (1− πφy([zc; zd])) log pθ(x| [zc; zd])−DKL

(
qφy(y|zc, zd)||pα(y)

)]
−DKL (qφc(zc|x)||pσc(zc))−DKL (qφd(zd|x)||pσd(zd)) ,

where qσε(zε) = pσε(zε) and so they cancel each other. The expectations are

obtained via Monte-Carlo (MC) estimation via reparameterization trick (Kingma

& Welling, 2014; Rezende et al., 2014).

For the trusted set (supervised) part the ELBO is

L(x, y) =Eqφc (zc|x)qφd (zd|x)pσε (zε)

[
y log pθ(x| [zc; zε]) + (1− y) log pθ(x| [zc; zd])

]
+ log pα(y)−DKL (qφc(zc|x)||pσc(zc))−DKL (qφd(zd|x)||pσd(zd)) .

(4.9)

Lastly, we need to define the weighted cross-entropy CWCE(x, y), which is

CWCE(x, y) = −y. log q(y = 1|x)− ωimb.(1− y). log (1− q(y = 1|x)) (4.10)

where

ωimb = max

{
1,
Nl1

Nl0

}
, Nl1 =

Nl∑
i=1

yi, Nl0 = Nl −Nl1 , (4.11)

and ωimb compensates for trusted set class imbalance.1 However, we do not have

access to q(y = 1|x) and thus we cannot estimate CWCE(x, y) directly. Still, we

can minimize an upper-bound

CWCE(x, y) ≤ C̃WCE(x, y) =Eqφc (zc|x)qφd (zd|x)

[
− y log q(y = 1|zc, zd) (4.12)

− ωimb.(1− y). log (1− q(y = 1|zc, zd))
]
,

which is obtained by applying Jensen’s inequality.

Combining the three terms defined above, we minimize the overall loss

I = − 1

N

∑
x∈Xu

L(x) +
∑

(x,y)∈Xl×Yl

L(x, y)

+ β
1

Nl

∑
(x,y)∈Xl×Yl

C̃WCE(x, y) (4.13)

1Useful when the number of labelled outliers outnumbers the inliers. Such a case does not
reflect the common dataset composition, i.e. the number of inliers is larger than outliers.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 138

with respect to the generative and variational parameters. We note that the

above loss minimization will maximize the ELBO of the data, and minimize the

weighted cross-entropy loss. The hyperparameter β value controls the amount

of up-sampling and importance relative to the other terms, which tends to be

moderately high due to how small the trusted set is.

4.5.4 Distance Correlation Penalty

In this chapter, we assume that inlier and (systematic) error patterns have

generative processes that are statistically independent. This is true for a significant

portion of systematic errors, which also fit the description in our problem setting

(see Section 4.4). Some examples and related literature can be found in the

Background chapter (see Section 2.2.1) and in the Introduction of this chapter

(see Section 4.2). As such, we can make the assumption that the latent variables

zc and zd should be close to independent, and their marginal distributions q(zc)

and q(zd) should reflect that. One way to enforce independence between zc and

zd is to have zero (or low) marginal mutual information (MI).

Still, in some cases systematic errors may depend on the data classes t ∈ T of

X . In this case, the inlier and error generative processes should be conditionally

independent given the data label t – i.e. q(zc|t) and q(zd|t). Thus zc and zd

should have zero (or low) conditional mutual information given t. We leave this

type of systematic errors to be explored as future work, as they are less common

than the former.

In CLSVAE, ideally zc captures clean patterns only, whilst zd captures dirty

patterns. However, in more challenging scenarios, e.g. small trusted set or higher

dataset corruption, obtaining this solution may not be guaranteed. Enforcing a

constraint encouraging low marginal MI between zc and zd will lead to better

model performance and stability in challenging scenarios, improving repair quality.

We would like to introduce a constraint that minimizes marginal MI between

zc and zd. However, approximating MI properly can be complex. Instead, we

use distance correlation (DC) as a surrogate for MI (Székely et al., 2007), which

is easier to compute and can measure non-linear dependencies between vector

variables. Other works have used DC as a surrogate for MI, e.g. (Chen et al.,

2021). Further, DC can also measure dependence between vector variables of

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 139

different dimensions, which is often the case with zc and zd. For the data batch

(zc, zd) ∈ (Zc,Zd) where Zc ∈ RN×q and Zd ∈ RN×p, we can define the empirical

estimate of DC as dCorrN(Zc,Zd). Essentially, DC is the standard correlation

between the elements of the double centered pairwise distance matrices of each

data batch Zc and Zd. The range is 0 ≤ dCorrN(Zc,Zd) ≤ 1, where 0 means

variables are independent, and 1 implies that zc and zd are strongly correlated.

The definition of estimator dCorrN(Zc,Zd) is provided below. Then, we show

how to modify the training loss in order to integrate this constraint.

Empirical Distance Correlation

For a random data batch of n samples, such as (Z,Z ′) = {(zk, z′k) : k =

1, ..., n}, one can define the empirical estimate for the distance correlation between

multivariate random variables z ∈ Rq and z′ ∈ Rp. Note that q and p can be of

different dimensions, i.e. q 6= p. Given this data batch, using the definition from

(Székely et al., 2007), we first define Akl and Bkl as

akl = ||zk − zl||2 ,

āk· =
1

n

n∑
l=1

akl , ā·l =
1

n

n∑
k=1

akl , ā·· =
1

n2

n∑
k,l=1

akl ,

Akl = akl − āk· − ā·l + ā·· ,

and similarly, using bkl = ||z′k − z′l||2 we define

Bkl = bkl − b̄k· − b̄·l + b̄·· .

Now we are ready to define the empirical distance covariance as

dCovn(Z,Z ′) =
1

n2

n∑
k,l=1

AklBkl ,

and the following empirical distance variances for each random variable as

dVarn(Z) =
1

n2

n∑
k,l=1

A2
kl , dVarn(Z ′) =

1

n2

n∑
k,l=1

B2
kl .

Finally, combining the above measures we can write the distance correlation as

dCorrn(Z,Z ′) =
dCovn(Z,Z ′)√

dVarn(Z) dVarn(Z ′)
,

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 140

where 0 ≤ dCorrn(Z,Z ′) ≤ 1. Note that if dCorrn(Z,Z ′) = 0 then z and z′

are statistically independent random variables. Otherwise, if dCorrn(Z,Z ′) = 1

then they are strongly correlated. The distance correlation measure can capture

non-linear dependencies, whilst the more common Pearson correlation can only

capture linear dependencies. Further, a value of 0 for Pearson correlation does

not imply independence, unlike in distance correlation which it does.

Constraining the Optimization Procedure

Enforcing this constraint based on the distance correlation means adding a penalty

to the training loss. Therefore, reusing the loss defined in eq. (4.13) we now have

min
φc,φd,φy ,θ

I + λt dCorrN(Zc,Zd), (4.14)

where λt increases every epoch from 0 until it reaches a maximum value λT , which

is then maintained. The rate of increase of λt and λT are hyper-parameters. This

strategy is a type of penalty method as used in constrained optimization.

4.5.5 Outlier Detection and Repair Process

After training, we proceed with outlier detection and automated repair, as in

section 4.4. The detection task is to discover the ground-truth labels y for each

x ∈ X , using inferred labels ŷ. A score A(x) and threshold γ ≥ 0 are used to get

the set of outliers O = {x ∈ X | A(x) ≥ γ}, where a higher A(x) means the more

likely x is an outlier. The inferred label ŷ is obtained as: (inlier) ŷ = 1 if x /∈ O ;

(outlier) ŷ = 0 if x ∈ O. For our model, we use a score based on the negative log

probability of inlier given the latent subspaces, which is

A(x) = − log πφy([µφc(x);µφd(x)]), x ∈ X . (4.15)

The threshold γ can be chosen as γ ≈ − log(0.5) assuming qφy(y = 1|.) = πφy(.)

is near calibrated, or it can be user-defined. The repair task is to obtain an

inferred reconstruction x̂ from the outlier x ∈ O such that it is close to the inlier

ground-truth x̃. The repair is generated using the most likely reconstruction under

our model for y = 1 (inliers), which means only the clean subspace zc is used. This

is the maximum a posteriori estimate for a VAE, where one approximates pθ(zc|x)

by qφ(zc|x), and then uses the means of qφ(zc|x), qε(zε) and pθ(x | [zc; zε]) in the

estimate. Hence, we have

x̂ = µθ([µφc(x); 0]), x ∈ O. (4.16)

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 141

Additional Details

One should note that the formulation in eq. (4.16) is similar to the maximum

a posteriori (MAP) estimate derived for the standard VAE in Section 2.5.1.1.

Moreover, this type of MAP repair (or attribute manipulation) is commonly used

for conditional VAEs, as seen in Klys et al. (2018) (see Section 2.5.3.1). Such a

MAP repair strategy can be applied to CLSVAE and other types VAE models

(see Section 2.5). The reader should also note that the 0 in eq. (4.16) corresponds

to the mean of noise distribution qσε(zε) used during training. Just like µφc(x)

corresponds to qφ(zc|x), and µθ(.) to the decoder pθ(x | .).

As stated in Section 4.5.1 (in Additional Details), we initially tried the dirac

distribution q(zε) = δ{zε = 0}, which sometimes still had performance issues at

repair time. However, better repair performance was obtained when using q(zε)

defined as zero-mean Gaussian noise, and at repair time still using µε = 0 as

input to the decoder. During hyper-parameter search σε was kept as small as

possible, as performance was evaluated using the trusted set (like other models).

Empirically, we did not see an improvement when sampling from q(zε) to obtain

a repaired instance, for the same µφc(x). In fact, in some few cases we noticed a

drop in performance. Therefore we opted to maintain the MAP solution which

uses 0. Further, as stated in Section 4.5.1 (Additional Details), we believe that

using zε at train time allows to create a margin between the neighborhood around

zd = 0, and the zd space that encodes different types of errors. Indeed, the authors

in Ghosh et al. (2019) state that noise injection is a standard trick in VAEs to

smooth out the latent space around a particular neighborhood – e.g. around 0.

4.6 Experiments

We evaluate two tasks: outlier detection, and automated repair. Our experi-

ments use three image datasets: Frey-Faces2, Fashion-MNIST (Xiao et al., 2017),

Synthetic-Shapes. Synthetic-Shapes is a synthetic dataset built around four dif-

ferent shapes (classes): a circle, a rectangle, an ellipse and a triangle. These are

colored white and set in a black background. We corrupt datasets with synthetic

systematic errors, since public real-world datasets with ground-truth repairs and

respective labels are difficult to find, as seen in Eduardo et al. (2020); Krishnan

2http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat

http://www.cs.nyu.edu/~roweis/data/frey_rawface.mat

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 142

Dataset Data Type No. Data Classes No. Error Classes Error Types

Synthetic-Shapes
28× 28 binary

(black / white)
4 4 4 lines

Fashion-MNIST
28× 28 continuous

(grey-scale)
10 8 4 lines & 4 squares

Frey-Faces
28× 20 continuous

(grey-scale)
1 4 4 squares

Table 4.1: Description of dataset and its corruption.

et al. (2016); Liu et al. (2020). We compare our model (CLSVAE) with baselines

ranging from completely supervised to unsupervised.

4.6.1 Evaluation

For outlier detection we use AVPR (Average Precision) (Everingham et al., 2015)

to measure detection quality, which is a surrogate for the area under the precision-

recall curve (Hendrycks & Gimpel, 2016). This metric is preferred since it is

insensitive to label imbalance, typical in outlier detection. AVPR score is between

[0, 1] and higher means better. For automated repair we want to quantify the

quality of the repair, for outlier instances. We report the standardized mean

squared error (SMSE) between pixels of the ground-truth (inlier) instance and

that of the proposed repair. We report SMSE separately for the dirty pixels (those

affected by the systematic error) and for the clean pixels (those unaffected). The

first measures repair performance, while the latter measures distortion that the

repair process causes to clean pixels. In both cases, a lower SMSE means better.

Note in the case of binary pixels, the SMSE is just the Brier score, and thus is in

[0, 1].

4.6.2 Datasets and Corruption Process

In our experiments we take an uncorrupted dataset and inject it with systematic

errors. These systematic errors are synthetic, designed to seem like reasonable

image corruptions, e.g. occlusion or failing of a camera sensor. The types of

systematic errors used across datasets are either lines or squares. Lines (two

diagonal, one vertical, and one horizontal) cross the image from side to side, and

may have their color set at random (black / white). These lines always affect the

same pixels, and have thickness of one pixel. Squares are randomly uniformly

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 143

placed, so is their fill-in color, with size 6 × 6 pixels. We use different noise

levels so we can study their impact, we use [15%, 25%, 35%, 45%] of dataset. The

systematic error corruption process is done by picking uniformly at random an

instance, and then applying that systematic error. We use a range of trusted set

sizes by defining the number of instances labelled per systematic error class (type)

and per data class. The latter is the underlying classes in the dataset, e.g. item

labels in Fashion-MNIST. For each class, either systematic error or data class,

we provide label y for a few instances at random obtaining a trusted set. We

use the range TSsize = [5, 10, 25, 50] labelled samples per class, which results in

different trusted set sizes depending on number of classes. Particularly, we have

the trusted set ranges: Synthetic-Shapes with [40, 80, 200, 400] total samples; Frey-

Faces with [25, 50, 125, 250] total samples; Fashion-MNIST with [90, 180, 450, 900]

total samples. We create five examples (different random seeds) per noise level

and per trusted set size, and train the models on them. The results are then

averaged. Table 4.1 gives a summary of the datasets and their corruption (error

types), number of systematic errors and data classes. Regarding this experimental

setup, a more detailed description is provided below.

Detailed Description

Here we have a detailed description of the datasets and their corruption. For each

noise level corruption in NLsize = [15%, 25%, 35%, 45%], we instantiate five different

examples of the same dataset using different random seeds. For each of those

examples we build several trusted sets using the sizes in TSsize = [5, 10, 25, 50],

where labelled instances of smaller trusted sets are reused in bigger ones. The

models are run on each example, for each trusted set, and results are then averaged.

Synthetic-Shapes This is a synthetic image dataset. It is meant to test the

models in a simpler setting as it relates to the clean dataset. We treat the pixel

values as a Bernoulli variable. The underlying clean dataset is composed of four

different shapes (classes): a circle, a rectangle, an ellipse and a triangle. The

shapes are filled by white pixels and the background is black. For each instance,

the shape is placed uniformly at random inside the 28×28 black background. The

systematic errors have four types, all are white lines that cross the square image

from one side to another side. We have 4 fixed-in-place lines (two diagonal, one

vertical, and one horizontal), affecting the same pixels, and sometimes intersecting

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 144

with the shapes. Hence, we have a total of eight underlying classes for trusted set

constitution, i.e. four data and four systematic error classes.

The size of the images is 28× 28, and the pixel values are binary {0, 1}, i.e. black

and white. Overall, we have a dataset size of N = 5000, with the following split:

train (80%), validation (10%), test (10%). Given the eight underlying classes, the

size dataset N , and TSsize, we have the trusted set range: [40, 80, 200, 400] total

number of labelled instances, which corresponds to [0.8%, 1.6%, 4%, 8%] of the

entire dataset

Frey-Faces This is a gray-scale image dataset consisting of the same person with

different facial expressions. We treat pixel values as continuous. In terms of data

classes, we only have one (monolithic), since no labels for the expressions are

provided. We have four systematic error classes, which consist of four randomly

uniformly placed squares of 6× 6 pixels. The place and color of these squares is

defined by the random seed, when the corruption example is created. After that,

always the same features are affected. Hence, in total we have five underlying

classes for trusted set constitution, i.e. one data and four systematic error classes.

The size of images is 28× 20, and the pixel values range from [0, 256], i.e. gray-

scale. The size of the entire dataset is N = 1965, with the following split: train

(80%), validation (10%), test (10%). Given the above and TSsize, the trusted set

range is: [25, 50, 125, 250] total number of labelled instances, which corresponds

to [1.3%, 2.5%, 6.4%, 12.7%] of the entire dataset.

Fashion-MNIST This is a gray-scale image dataset, which consists of images of

different types of clothing and accessories from an online merchant. There are 10

existing data classes, provided with the dataset. We have 4 fixed-in-place lines

(two diagonal, one vertical, and one horizontal) where the color (black or white)

for each depends on the random seed. Then we have 4 squares of size 6× 6 placed

randomly uniformly with random color, dependent on random seed. Hence, we

have a total of 18 underlying classes for trusted set constitution, i.e. 10 data and

8 systematic error classes.

The size of the images is 28× 28, and the pixel values are continuous with range

[0, 1], i.e. gray-scale. The original train set is of size 60000 instances, which we

split for our actual train set of 54000 (90%) and validation set of 6000 (10%). We

use the same test set of 10000 instances, so N = 70000. Given TSsize and the train

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 145

set size N , the trusted set range is: [90, 180, 450, 900] total number of labelled

instances, which corresponds to [0.12%, 0.25%, 0.64%, 1.28%] of the entire dataset.

4.6.3 Comparative Models

Our baselines are VAEs since most of the relevant work in sparse semi-supervision is

of this type (Ilse et al., 2020; Joy et al., 2020), and the task of repair is related with

that of manipulating the reconstruction. We have four baselines: VAE-L2, CVAE,

VAEGMM, CCVAE. For details on model architecture, hyperparameter selection

and training see below in section 4.6.3.2. The VAE-L2 model is an unsupervised

method tackling the issue of corruption by applying strong regularization (`2

regularization on weights). VAE-L2 uses the reconstruction likelihood for detection,

more details in section 2.5.2.1. CVAE is the supervised version of the semi-

supervised M2 model (Kingma et al., 2014), and should have better repair quality

than M2. CVAE uses the reconstruction likelihood as an detection score. We

found a smaller variance for p(z) to be beneficial, for details see section 2.5.3.1.

VAEGMM, based on (Willetts et al., 2020), is an improved version of M2 for

the sparse semi-supervision setting. In this setting the M2 model tends to have

posterior collapse issues with q(y|x), picking one class over others. VAEGMM

overcomes this issue, improving clustering and classification performance. Hence,

we expect competitive detection performance from VAEGMM, for details see

section 2.5.3.3. The CCVAE (Joy et al., 2020) is a state-of-the-art (SotA) semi-

supervised VAE disentanglement model, allowing attribute manipulation in semi-

supervised settings. For repair, we follow the automatic attribute manipulation

procedure proposed by (Joy et al., 2020), for details see section 2.5.4.1. We adapted

their code to our pipeline. Contrary to Joy et al. (2020), we found performance

was superior when using a large up-sampling coefficient for the classifier, i.e. like

β in CLSVAE. More details on the choice of β value for CCVAE are given in

section 4.6.3.2 (see Hyperparameter Selection). We provide two versions of our

model, with and without distance correlation penalty in section 4.5.4. So for

CLSVAE-NODC use eq. (4.13) as training loss, whilst for CLSVAE use eq. (4.14).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 146

4.6.3.1 Effects on Training: Scaling VAE latent prior variances whilst using

SGD methods

In this section, we discuss the impact of scaling the variances of the z prior in

the generative model, i.e. the hyperparameters σc and σd (see section 4.5.1). This

discussion also applies to other VAE models where changing variance values can

also positively impact detection and repair performance, e.g. VAEGMM (section

2.5.3.3) or CVAE (section 2.5.3.1). Note that all these VAE models use some

type of stochastic gradient descent (SGD) optimization for training, e.g. Adam

(Kingma & Ba, 2014) or AdaGrad (Duchi et al., 2011).

Theoretically, for the generative model in eq. (4.3) changing the variance of the

Gaussian priors for z should not change the mathematical optimum of the ELBO

loss – eq. (4.13). This is because the weights of both the encoder and decoder

neural networks could be scaled together, thus nullifying the variance scaling effect

– i.e. scaled out. However, empirically we see that when the model is trained using

an optimization algorithm like SGD the change of variance does impact model

performance. Unlike what is theoretically suggested above. This is likely due

to a regularization effect of SGD (Sekhari et al., 2021) that conditions network

weights, making it harder to arbitrarily scale them. Note that SGD uses noisy

gradients during training, which likely justifies this effect. Hence, if the weights

are conditioned, then varying the variance of the prior of z will have an impact

on the trained model.

It should be noted that other papers on autoencoders (Rivera et al., 2020; Ruff

et al., 2019; Pol et al., 2019) have also assumed that latent representations of

outliers tend to lay at the tail end of the (data) distribution. This can mean

assuming larger variances when modelling outliers in latent space, e.g. (Rivera

et al., 2020; Ruff et al., 2019) and our CLSVAE. Or instead, like in Pol et al.

(2019), assume that outliers will cause a larger KL divergence between posterior

and prior distributions of z. In this case, this basically means outlier instances will

have more information to encode, which relates to a larger variance for outliers.

Once more, all these AE models have been trained using SGD type optimization

like CLSVAE.

Lastly, we point the reader to section 4.6.5.3, where an additional experiment

is provided showing that data corrupted with outliers has larger variance than

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 147

inlier data alone. This was carried out using a standard VAE (Kingma & Welling,

2014), so the discussion is broadly applicable.

4.6.3.2 Model Architectures, Hyperparameters and Training

In this section, we provide a detailed description on how the models introduced

above were setup for the experiments. Specifically, we describe hyperparame-

ter value selection, neural network architectures, and training procedure (e.g.

optimization algorithm).

Hyperparameter Selection

In our experiments, we tuned model hyperparameters according to outlier detection

performance, which means highest AVPR (average precision). This was evaluated

on the trusted set, the only labelled part of the dataset. Often, we would look at

the repairs (reconstructions) offered by each model for the trusted set. This way

we confirm that the repair process is reasonable enough, and no adjustment is

needed on the hyperparameters side. In the case of VAE-L2 we had to not just

account for AVPR in the trusted set, but also check repair performance via SMSE

(standardized mean squared error). This is because strong regularization, higher

`2 coefficient, often leads to better outlier detection performance, but that comes

at the cost of repair quality due to the VAE collapsing to mean behaviour. For

each model, the hyperparameter search was carried out for each dataset at a noise

level of 35%, and with 25 samples per class.

• VAE-L2 In Synthetic-Shapes: 200 epochs; KL divergence annealing used;

`2 coefficient is 35.0. In Frey-Faces: 300 epochs; KL divergence annealing

used; `2 coefficient is 100.0. In Fashion-MNIST : 100 epochs; KL divergence

annealing used; `2 coefficient is 100.0.

• VAEGMM In Synthetic-Shapes: 200 epochs; KL divergence annealing

used; fraction of clean data α = 0.6; (trusted set) up-sampling coefficient

β = 1000; σy=1 = 0.9 and σy=0 = 5.0. In Frey-Faces: 300 epochs; KL

divergence annealing used; fraction of clean data α = 0.6; (trusted set)

up-sampling coefficient β = 1000; σy=1 = 0.6 and σy=0 = 5.0. In Fashion-

MNIST : 100 epochs; KL divergence annealing used; fraction of clean data

α = 0.6; (trusted set) up-sampling coefficient β = 100; σy=1 = 0.5 and

σy=0 = 5.0.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 148

• CVAE In Synthetic-Shapes: 200 epochs; KL divergence annealing used;

σ = 0.5. In Frey-Faces : 300 epochs; KL divergence annealing used; σ = 0.2.

In Fashion-MNIST : 100 epochs; KL divergence annealing used; σ = 0.5.

• CCVAE In Synthetic-Shapes: 200 epochs; fraction of clean data α = 0.6;

(trusted set) up-sampling coefficient β = 50000.0. In Frey-Faces: 300

epochs; fraction of clean data α = 0.6; (trusted set) up-sampling coefficient

β = 10000.0. In Fashion-MNIST : 100 epochs; fraction of clean data α = 0.6;

(trusted set) up-sampling coefficient β = 250000.0.

• CLSVAE In Synthetic-Shapes : 200 epochs; fraction of clean data α = 0.6;

KL divergence annealing used; (trusted set) up-sampling coefficient β =

1000.0. σε = 0.5; σc = 0.5; σd = 5.0; distance correlation (DC) penalty used;

λt annealing ratio of 0.5 (DC penalty); λT maximum value of 100.0 (DC

penalty). In Frey-Faces: 300 epochs; fraction of clean data α = 0.6; KL

divergence annealing used; (trusted set) up-sampling coefficient β = 1000.0.

σε = 0.6; σc = 0.2; σd = 5.0; distance correlation (DC) penalty used;

λt annealing ratio of 0.5 (DC penalty); λT maximum value of 1000.0 (DC

penalty). In Fashion-MNIST : 100 epochs; fraction of clean data α = 0.6; KL

divergence annealing used; (trusted set) up-sampling coefficient β = 100.0.

σε = 0.1; σc = 0.2; σd = 5.0; distance correlation (DC) penalty used; λt

annealing ratio of 0.5 (DC penalty); λT maximum value of 1000.0 (DC

penalty).

• CLSVAE-NODC Same hyperparameter options as CLSVAE but without

the distance correlation penalty.

Note the annealing ratio above for the KL divergence and for the DC penalty

is inspired by Fu et al. (2019). We use only one cycle (monotonic), and the R

(or ratio) is the proportion used to increase the penalty coefficient (or KL term

coefficient), for instance a value of 0.5.

Now we discuss in more detail how the β value was chosen for the CCVAE

model. In our experiments, the β in CCVAE was set to higher values so it could

compensate for the very small trusted set sizes used herein. Empirically, at first

we tried setting β to small values, or even β = 1 as suggested in Joy et al. (2020).

However, CCVAE when using a small β was not able to disentangle properly the

clean and dirty patterns, specifically in smaller trusted sets. This was noticeable

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 149

when we used CCVAE for repairing the data instance, where it was common

to find part of the error pattern still present. As a result, the CCVAE model

had poor detection and repair performance. On the other hand, empirically we

found that higher β values resulted in properly disentangled clean and dirty error

patterns when repairing data instances. In this case, CCVAE had good outlier

detection and data repair performance.

We hypothesize that the original application of CCVAE assumed larger labelled

sets, and probably better balanced as well (labels of data attributes). Note

that outliers are often smaller portions of the entire dataset, unlike the labelled

attributes of the applications in Joy et al. (2020). This means that there is a

class imbalance problem in typical outlier detection tasks. We believe that a

higher β allows to virtually up-sample the importance of the small trusted set

when training the CCVAE and other models, particularly outlier examples. It is

probably the case that smaller values of β are not enough to bias the latent space

zc to properly disentangle clean and dirty patterns. As a result, the data repair

performance of CCVAE and other models suffers.

Optimization

We used the PyTorch framework to code all our models, and trained on a GeForce

TITAN X GPU. All models were trained using the Adam optimizer (Kingma &

Ba, 2014), with an initial learning rate of 0.001.

Model Architectures

For continuous type data, i.e. Fashion-MNIST and Frey-Faces, we used the

Gaussian distribution as the likelihood of each pixel in the reconstruction loss.

The variance of the Gaussian distribution is shared amongst all the pixels in

the image, and it is learnt as a parameter of the model. This was done for all

models. For binary type data, i.e. Synthetic-Shapes, we treated each pixel as a

Bernoulli variable, and used the log-likelihood of this distribution for each pixel

in the reconstruction loss. This was done for all models.

We used very similar encoder and decoder architectures for all models, so as to be

fair and the results comparable. In the case of CLSVAE we used two encoders,

one for the clean subspace zc, and the other for the dirty subspace zd. This

architecture yielded better results for us in terms of repair in the trusted set.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 150

Encoder Decoder

(img size, 200) → → (15, 50) →
→ ReLU → → ReLU →
→ (200, 100) → → (50, 100) →
→ ReLU → → ReLU →
→ (100, 50) → → (100, 200) →
→ ReLU → → ReLU →
→ 2 × (50, 15) → (200, img size)

Table 4.2: Architecture of encoder and decoder for VAE and VAEGMM. Further, for

binary pixels the decoder will use a Sigmoid non-linearity at the end.

Encoder Decoder

(img size, 200) → → (16, 50) →
→ ReLU → → ReLU →
→ (200, 100) → → (50, 100) →
→ ReLU → → ReLU →
→ (100, 50) → → (100, 200) →
→ ReLU → → ReLU →
→ 2 × (50, 15) → (200, img size)

Table 4.3: Architecture of encoder and decoder for CVAE. Further, for binary pixels

the decoder will use a Sigmoid non-linearity at the end.

CLSVAE architecture can be seen in Table 4.5 for the encoders and decoder, and

the classifier can be seen in Table 4.7. In Table 4.2, we see the neural architecture

for the encoder and decoder of VAE and VAEGMM. The classifier architecture

for the VAEGMM can be seen in Table 4.6. In Table 4.3, we find the architecture

for the encoder and decoder of CVAE. In Table 4.4, we find the architecture for

the encoder and decoder of CCVAE. The classifier architecture of CCVAE is just

zc multiplied by a weight parameter plus a bias parameter, and then a sigmoid

non-linearity is applied – like in Joy et al. (2020).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 151

Encoder Decoder

(img size, 200) → → (16, 50) →
→ ReLU → → ReLU →
→ (200, 100) → → (50, 100) →
→ ReLU → → ReLU →
→ (100, 50) → → (100, 200) →
→ ReLU → → ReLU →
→ 2 × (50, 16) → (200, img size)

Table 4.4: Architecture of encoder and decoder for CCVAE. Further, for binary pixels

the decoder will use a Sigmoid non-linearity at the end.

Encoder zc Encoder zd Decoder

(img size, 200) → (img size, 200) → → (15, 50) →
→ ReLU → → ReLU → → ReLU →
→ (200, 100) → → (200, 100) → → (50, 100) →
→ ReLU → → ReLU → → ReLU →
→ (100, 50) → → (100, 50) → → (100, 200) →
→ ReLU → → ReLU → → ReLU →
→ 2 × (50, 10) → 2 × (50, 5) → (200, img size)

Table 4.5: Architecture of encoder and decoder for CLSVAE. Note for CLSVAE latent

space of size 15 is split: 10 for zc and 5 for zd. Further, for binary pixels the decoder

will use a Sigmoid non-linearity at the end.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 152

Classifier

(img size, 200) →
ReLU

→ (200, 100) →
ReLU

→ (100, 50) →
ReLU

→ (50, 1)

Sigmoid

Table 4.6: Architecture of classifier VAEGMM.

Classifier

(15, 7) →
ReLU

→ (7, 5) →
ReLU

→ (5, 1)

Sigmoid

Table 4.7: Architecture of classifier CLSVAE, input is z.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 153

4.6.4 Discussion of Results

In Figure 4.2(a) we show performance as a function of the size of the trusted

set, i.e. sweep of trusted set sizes, for a 35% noise level. Similar performance is

seen for other datasets (see section 4.6.5.1). Table 4.2(b) shows the results for

all datasets for a 35% noise level and trusted set size of 10 labelled samples per

class. Results for all trusted set sizes and noise levels are found in section 4.6.5.1,

with similar analysis on performance. Additional examples of repairs are seen in

section 4.6.5.2, including inlier instances, 45% noise level, and 5 samples per class

(trusted set size) for Synthetic-Shapes since its an easier dataset.

Outlier Detection Looking at Figure 4.2, we see that on average both CLSVAE

(our model) and CLSVAE-NODC have the highest AVPR, registering the best

detection performance, with similar scores. We see that CCVAE, the previous SotA,

has similar detection performance as CLSVAE. VAEGMM, also semi-supervised,

lags behind both likely because its designed for slightly larger trusted sets. All semi-

supervised models (CLSVAE, CLSVAE-NODC, CCVAE, VAEGMM) improve

their detection performance as the trusted set grows larger. CVAE and VAE-L2

do not use a trusted set, and thus have the same performance throughout all the

trusted set range in Figure 4.2(a). These two observations about the trusted set

range are also seen, for all datasets and noise levels, in section 4.6.5.1. CVAE is

supervised, still it shows poor performance, this may be due to: issues linked to

(decoder) likelihood-based scores (Eduardo et al., 2020; Lan & Dinh, 2020); poor

fitting to the data, thus impacting negatively the score. VAE-L2 uses a likelihood

score, and is unsupervised, so poorer detection performance is understandable.

This highlights semi-supervision as being important in systematic error detection.

VAE-L2 registering good performance in Synthetic-Shapes (see Figure 4.2(b)) is

likely due to this dataset being easier. Lastly, we note that CLSVAE tends to have

better detection performance in higher noise levels relative to other methods (see

section 4.6.5.1). Therein, CCVAE has close to or similar detection performance

as CLSVAE.

Automated Repair In Figure 4.2, we see that on average CLSVAE (our model)

is best at automated repair (lowest SMSE on dirty pixels). We also see that

distortion (repair clean pixels, SMSE) is relatively low, but not the lowest. This

results in CLSVAE overall being the best repair method, not only replacing pixel

values of the systematic error, but also inferring correctly the structure of the

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 154

(a) Synthetic-Shapes: 35% noise, 10 labels per class (1.6%

of dataset).

(b) Fashion-MNIST : 35% noise, 10 labels per class (0.25%

of dataset).

(c) Frey-Faces: 35% noise, 10 labels per class (2.5% of

dataset)

Figure 4.1: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 155

(a)

Dataset Model Outlier Detection (AVPR ↑) Repair on Dirty Pixels (SMSE ↓) Repair on Clean Pixels (SMSE ↓)

Synthetic-Shapes VAE-L2 (Kingma & Welling, 2014) 0.93 (0.03) 0.049 (0.008) 0.015 (0.002)

VAEGMM (Willetts et al., 2020) 0.62 (0.10) 0.974 (0.009) 0.003 (3e-4)

CVAE (Kingma et al., 2014) 0.47 (0.03) 0.429 (0.114) 0.003 (3e-4)

CCVAE (Joy et al., 2020) 0.98 (0.03) 0.031 (0.023) 0.008 (0.001)

CLSVAE-NODC (Ours) 0.99 (3e-4) 0.018 (0.024) 0.002 (3e-4)

CLSVAE (Ours) 0.99 (0.02) 0.014 (0.008) 0.005 (0.004)

Fashion-MNIST VAE-L2 (Kingma & Welling, 2014) 0.49 (0.03) 1.362 (1.140) 0.175 (0.004)

VAEGMM (Willetts et al., 2020) 0.66 (0.13) 3.161 (1.032) 0.095 (0.001)

CVAE (Kingma et al., 2014) 0.36 (0.01) 1.732 (0.335) 0.099 (0.001)

CCVAE (Joy et al., 2020) 0.81 (0.09) 1.719 (0.956) 0.136 (0.003)

CLSVAE-NODC (Ours) 0.84 (0.10) 0.854 (0.214) 0.107 (0.002)

CLSVAE (Ours) 0.84 (0.08) 0.572 (0.238) 0.108 (0.002)

Frey-Faces VAE-L2 (Kingma & Welling, 2014) 0.73 (0.14) 10.32 (6.118) 0.420 (0.033)

VAEGMM (Willetts et al., 2020) 0.96 (0.06) 22.32 (4.112) 0.070 (0.003)

CVAE (Kingma et al., 2014) 0.42 (0.02) 3.190 (0.675) 0.111 (0.024)

CCVAE (Joy et al., 2020) 0.99 (0.01) 0.947 (0.123) 0.270 (0.059)

CLSVAE-NODC (Ours) 0.85 (0.13) 0.269 (0.078) 0.172 (0.048)

CLSVAE (Ours) 0.99 (0.02) 0.321 (0.168) 0.177 (0.033)

(b)

Figure 4.2: Outlier detection uses AVPR score where highest is best. Repair for

dirty pixels, and for clean pixels (distortion), uses SMSE where lowest is best. (a)

Trusted set range sweep for Fashion-MNIST where [0.12, 0.25, 0.64, 1.28] % of the

dataset, at 35 % noise level. (b) Table for results at 35% noise level, and 10 labelled

samples per class for the trusted set. Boldface corresponds to the best performances

within a standard error, and green color to best mean performance overall. Standard

error in brackets.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 156

ground-truth repair (both clean and dirty pixels). This is confirmed in Figure

4.1, where reconstructions (repairs) by CLSVAE show the best quality: replacing

the error values of affected pixels and recovering the underlying ground-truth,

whilst preserving the uncorrupted image portion (i.e. low distortion). CLSVAE

has slightly better repair than CLSVAE-NODC on average, but most importantly,

it has better performance stability than CLSVAE-NODC, which can be seen in

section 4.6.5.1 for repair (dirty pixels). Further, in section 4.6.5.1, repair with

CLSVAE is more advantageous relative to other models at higher noise levels. As

expected, semi-supervised models (CLSVAE, CLSVAE-NODC, CCVAE) improve

their repair of dirty pixels as the trusted set increases (see Figure 4.2(a)). Both

VAE-L2 and CVAE do not use a trusted set, so performance is static. CCVAE has

the ability to perform good repair, registering the second best repair for dirty pixels

after CLSVAE, but often with higher distortion. CCVAE suffers from two issues

that account for its worse performance relative to CLSVAE. For one, looking at

Figure 4.1, CCVAE can sometimes fail to replace the pixel values from systematic

errors. Secondly, and more often, it can fail to recover the underlying ground-truth

even when replacing erroneous pixel values. Similarly, it has difficulty preserving

the uncorrupted image portion (higher distortion). So some information about

inlier appearance is being lost. This is explained by the fact that CCVAE latent

space is not disentangled regarding the clean and dirty patterns. CVAE can repair

some outliers well, but it fails to deal with other systematic errors, which leads

to an overall poor repair performance. This is maybe due to the binary latent

variable used for y making it harder to model multiple systematic errors, for more

discussion see Joy et al. (2020). VAE-L2 is able to repair some errors, but overall

has worse repair than CLSVAE. Its strong regularization, optimized mostly for

detection, leads to higher distortion and loss of detail (see Figure 4.1). Its higher

standard error (erratic repairs) is due to not being able to distinguish between

clean and dirty patterns. VAEGMM does not do well in repair. This is likely due

to it being better suited for classification or clustering tasks.

4.6.4.1 Timing Information on Models

All the models explored in this chapter are VAEs with similar architectures in

terms of their neural networks, however some differences exist in terms of inference

time. For all models a GPU (GeForce TITAN X) was used for training, and

generally models use the same order of magnitude in terms of computation time.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 157

The models that take less time are VAE-L2 and CVAE since they have simple

architectures and inference procedures. Taking a bit more time we have VAEGMM,

since an additional classifier neural network has to be trained. The models CCVAE

and CLSVAE have similar computation times, and are the most expensive to

train.

As an example, for Fashion-MNIST the training time for VAE-L2 and CVAE is

about 35 minutes, whilst for VAEGMM is an additional 5 minutes totalling 40

minutes. Meanwhile for CLSVAE we register about 40 minutes of compute time,

and for CCVAE we register about 50 minutes overall. Note that the Fashion-

MNIST dataset is the largest dataset in our experiments, and thus it is the most

expensive in terms of computation time.

4.6.5 Additional Results

The purpose of this section is to provide a complement of results to the

main results section (Section 4.6.4), and show the reader the complete set of

experiments. As such, we present additional figures for the experiments carried

out in this chapter.

These figures show the entirety of the experimental scenarios as defined in section

4.6.2. In section 4.6.5.1, results are shown for outlier detection (AVPR) and data

repair (SMSE) for all noise levels and trust sets sizes. The main conclusions made

in the discussion section 4.6.4 also apply to these results.

In addition, in section 4.6.5.2, supplementary examples of outlier instances being

repaired by the different models are shown, where different trusted set sizes and

noise levels are explored. Reconstructions of inlier instances are also shown so as

to check if clean data is being correctly modelled.

Lastly, in section 4.6.5.3, we present a simple experiment providing additional

evidence to the claim that corrupted datasets (with outliers) have larger variance

(entropy) when modelled than clean datasets. This means that there is more

information to be modelled by the VAE in corrupted datasets (with outliers),

compared to less information to be modelled in clean datasets (inliers only). We

also show that clean data (inliers) can be modelled by smaller latent space in

VAEs when compared to dirty data. Both these assumptions are tied to the fact

that corrupted datasets have more diversity due to added errors, and hence more

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 158

information to model. Note that these assumptions were made in the generative

model of CLSVAE, in section 4.5.1, which helped discern inliers from outliers and

thus improve model performance.

4.6.5.1 Results for all Noise Levels and Trusted Set Sizes (Sweep)

Figure 4.3: Synthetic-Shapes. Outlier detection (AVPR) where higher is bet-

ter. Trusted set range sweep where TSsize = [5, 10, 25, 50] samples per class,

i.e.[0.8%, 1.6%, 4%, 8%] of the entire dataset.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 159

Figure 4.4: Synthetic-Shapes. Repair of dirty pixels in outliers (SMSE), where lower

is better. Trusted set range sweep where TSsize = [5, 10, 25, 50] samples per class, i.e.

[0.8%, 1.6%, 4%, 8%] of the entire dataset.

Figure 4.5: Synthetic-Shapes. Repair of clean pixels in outliers (SMSE), i.e. dis-

tortion, where lower is better. Trusted set range sweep where TSsize = [5, 10, 25, 50]

samples per class, i.e. [0.8%, 1.6%, 4%, 8%] of the entire dataset.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 160

Figure 4.6: Frey-Faces. Outlier detection (AVPR) where higher is better.

Trusted set range sweep where TSsize = [5, 10, 25, 50] samples per class, i.e.

[1.3%, 2.5%, 6.4%, 12.7%] of the entire dataset.

Figure 4.7: Frey-Faces. Repair of dirty pixels in outliers (SMSE), where lower is

better. Trusted set range sweep where TSsize = [5, 10, 25, 50] samples per class, i.e.

[1.3%, 2.5%, 6.4%, 12.7%] of the entire dataset.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 161

Figure 4.8: Frey-Faces. Repair of clean pixels in outliers (SMSE), i.e. distortion,

where lower is better. Trusted set range sweep where TSsize = [5, 10, 25, 50] samples

per class, i.e. [1.3%, 2.5%, 6.4%, 12.7%] of the entire dataset.

Figure 4.9: Fashion-MNIST. Outlier detection (AVPR) where higher is bet-

ter. Trusted set range sweep where TSsize = [5, 10, 25, 50] samples per class, i.e.

[0.12%, 0.25%, 0.64%, 1.28%] of the entire dataset.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 162

Figure 4.10: Fashion-MNIST. Repair of dirty pixels in outliers (SMSE), where lower

is better. Trusted set range sweep where TSsize = [5, 10, 25, 50] samples per class, i.e.

[0.12%, 0.25%, 0.64%, 1.28%] of the entire dataset.

Figure 4.11: Fashion-MNIST. Repair of clean pixels in outliers (SMSE), i.e. distortion,

where lower is better. Trusted set range sweep where TSsize = [5, 10, 25, 50] samples

per class, i.e. [0.12%, 0.25%, 0.64%, 1.28%] of the entire dataset.

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 163

4.6.5.2 Additional Reconstructions (Repairs) for all Datasets

Synthetic-Shapes

Figure 4.12: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Synthetic-Shapes: 35% noise,

5 labels per class (0.8% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 164

Figure 4.13: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Synthetic-Shapes: 35% noise,

50 labels per class (8% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 165

Figure 4.14: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Synthetic-Shapes: 45% noise,

5 labels per class (0.8% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 166

Frey-Faces

Figure 4.15: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Frey-Faces: 35% noise, 10

labels per class (2.5% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 167

Figure 4.16: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Frey-Faces: 35% noise, 50

labels per class (12.7% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 168

Figure 4.17: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Frey-Faces: 45% noise, 10

labels per class (2.5% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 169

Fashion-MNIST

Figure 4.18: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Fashion-MNIST : 35% noise,

10 labels per class (0.25% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 170

Figure 4.19: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Fashion-MNIST : 35% noise,

50 labels per class (1.28% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 171

Figure 4.20: Images for model repair (reconstruction), outlier (corrupted) and inlier

(uncorrupted): (a) Original (Outlier); (b) Ground-Truth (Inlier); (c) VAE-L2; (d)

VAEGMM; (e) CVAE; (f) CCVAE; (g) CLSVAE-NODC; (h) CLSVAE. The first two

rows are inlier examples, the others being outliers. Fashion-MNIST : 45% noise,

10 labels per class (0.25% of dataset).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 172

4.6.5.3 Testing Standard VAE: Entropy of Clean vs. Corrupted Data

Figure 4.21: Entropy of ground-truth training data (clean: without corruption) vs

the entropy of corrupted training data (as in Table 4.1). Entropy estimation via

IWAE (Burda et al., 2016), using a standard VAE (not regularized). VAE uses same

architecture of section 4.6.3.2, except dimension of z (latent space) now has the range

[2, 4, 6, 8, 10, 15, 20, 25, 35, 50] (x-axis). Frey-Faces training data, with 35% noise

level for corrupted dataset.

In this section, we experimentally compare the entropy of clean (without corrup-

tion) training data, and the entropy of corrupted training data. A larger entropy

means that a dataset has larger variance overall. Note that in the setup of our

problem, i.e. repairing systematic errors (see section 4.4), only corrupted data is

used for training. In Figure 4.21, for Frey-Faces, we compare the estimated entropy

of clean training data against one that has been corrupted (35 % noise, corruption

as in Table 4.1). We estimate the entropy by first training a standard VAE model

on the dataset (clean or corrupted), and then after training, we compute a tight

bound on the marginal log-likelihood of that dataset. We compute this tight bound

via IWAE estimator (Importance Weighted Autoencoders, (Burda et al., 2016)),

where we use K = 250 samples. Note that entropy is H(x) = −Epθ(x) [log pθ(x)],

and hence marginal log-likelihood is just −H(x). We vary the dimension of VAE

latent space (z) in order to see how well the model can learn the training data.

For this experiment, the VAE is not regularized.

The main idea is to see whether corrupted data (with outliers) has larger variance

than clean data (inliers only). Once more, larger entropy equates to larger data

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 173

variance. A dataset with larger variance is a dataset with more diversity in terms

of the patterns it contains, and hence it has more information to be modelled.

Therefore corrupted data has more information to be modelled by the latent space

of a VAE compared to clean data.

Our claim, supported in literature (Eduardo et al., 2020; Ruff et al., 2019), is

that a dataset that has been corrupted has larger variance (entropy) because the

added outliers (e.g. systematic errors) increase data pattern diversity. Looking at

Figure 4.21, we see that overall the entropy of corrupted data is larger than clean

data, for all sizes of z. Hence, corrupted data has larger variance than clean data.

For the smaller dimensions of z, in range [2, 10] units, we see that the VAE has

less trouble learning the clean data compared to the corrupted data. This is also

evidenced by how more quickly the entropy decreases for clean data relative to

corrupt data, as we increase the latent space size in [2, 10]. We conclude that a

VAE only needs a smaller latent space (subspace) to model clean data (inliers),

and that corrupted data needs a larger latent space to be modelled properly.

4.7 Concluding Remarks

We have proposed a novel semi-supervised VAE (CLSVAE) for outlier detection

and automated repair, in the presence of systematic errors. Our model exploits the

fact that systematic errors are predictable by high capacity models, unlike random

errors. Thus, CLSVAE partitions the latent space into two subspaces: one for

clean patterns, and another for dirty ones. Inliers are only modelled by the clean

pattern subspace, whilst outliers use both subspaces. We encourage low mutual

information between these subspaces through a penalty, improving performance

stability. Empirically this encourages higher fidelity repairs by the model, without

human in the loop or other post-processing. We show CLSVAE only needs a small

trusted set, requiring the user to label less data. We show that unsupervised

models may not be able to distinguish between clean patterns and systematic

errors, and strong regularization leads to a lower quality repair. Experimentally,

CLSVAE showed superior repair quality and performance compared to other

supervised and semi-supervised models, including a state-of-the-art VAE latent

disentanglement model. Note that some of these baseline models were specially

designed to handle small labelled sets. Further, we notice that CLSVAE is able to

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 174

repair more instances affected by systematic errors compared to baseline models.

Experiments were carried out on image data, and in the future, we would like to

explore other types of systematic errors and data types (tabular, sensor, natural

language).

4.7.1 Advantages and Disadvantages

In summary, a list of advantages related to this chapter and the proposed model

(CLSVAE) is given below:

• Labels are easier to obtain and more broadly applicable. In terms

of effort by the user encoding prior knowledge into the model using labels

is far easier than using scripts or logic rules. Scripts require the user to

know how to computer program. Similar with logic rules as these are often

defined using first-order logic, thus require skill. Moreover, labelling inliers

and outliers should be applicable to all kinds of data – e.g. image, tabular,

or even time-series data. In CLSVAE the user only needs to be able to label

all type of errors it wants removed, and a few inliers.

• Less labelled data is needed for good data repair. It was shown

that CLSVAE compared to other semi-supervised generative models needed

less labelled inliers and outliers for similar data repair performance. This

is important because user intervention, even in the form of labelling data

instances, still takes time and effort.

• Semi-supervision allows for precise detection and repair. Models

using semi-supervision like CLSVAE allow for the detection and repair of

only those types of outliers that the user wants fixed. Since unsupervised

models cannot easily encode this information given by the user, there is

no guarantee those types of outliers will be fixed. Furthermore, increasing

the strength of regularization in order to detect these outliers may lead to

poor repair performance later on. This is a drawback that semi-supervised

models can avoid far more easily.

• Deep learning provides flexibility. CLSVAE is a deep autoencoder, and

thus the neural architectures of the encoders and decoders can be adapted

to tackle different data types, e.g. image or tabular data. Further, different

architectures like convolutional neural networks, or Transformer layers could

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 175

be explored.

• Representation learning for clean data. The CLSVAE model learns

a latent subspace that only encodes information about the clean patterns

present in data instances. This latent representation could be used later on

for downstream tasks (e.g. classification, clustering). The main advantage

is that this latent representation will not be corrupted by errors. Therefore,

it will not taint the downstream task model training.

• Thresholds for traditional outlier detection easier to set. An

advantage of the semi-supervised formulation of CLSVAE, like other semi-

supervised VAEs, is that outlier detection is done using a classifier – e.g.

qφ(y|x). Generally, deep classifiers are more or less calibrated and thus

threshold setting by the user should be easier. Hence a good starting point

is about γ ≈ − log(0.5).

Some relevant disadvantages are listed below:

• Complexity of deep learning architectures. Deep learning models

offer flexibility and increased performance in many tasks. However, one

issue about deep learning models like CLSVAE is that one needs to find the

correct neural architecture and tune several hyperparameters. This means

time and effort on the part of the user.

• Exploring tabular datasets. Given time constrains on this project only

image datasets were explored. For future work tabular data is left as a

goal. We believe that CLSVAE should be able to be applied for tabular

data. Given the experience with RVAE (Chapter 3), we believe that similar

datasets with synthetic systematic errors are reasonable experiments. The

RVAE neural architecture for the encoder and decoder is also a good start;

and we believe it should work with the current CLSVAE formulation and

training loss. If that is not good enough, then we can start looking into

self-attention layers for tabular data, where only a partition of the cells are

selected. This would work like masks such that for the clean subspace zc

the encoder looks at the clean cells. Concurrently, for the dirty pattern

subspace zd attends to the dirty cells. Other neural architectures are also

possible, and we can borrow from other deep generative models for tabular

data (see Section 2.4.1).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 176

• Downsides of repair using just the latent space. In this chapter, the

repair process for CLSVAE produced a repair for the entire repaired image

(all pixels). This is seen in the qualitative examples presented. It should be

noted that for the repair results using the SMSE metric, we partitioned the

results into clean pixels and dirty pixels. The repair process in CLSVAE

relies on a latent space representation, i.e. clean subspace zc. There is

the possibility that small changes to the latent space may affect all pixels

(features), even if only a few are dirty. Therefore, in practice, we can use

CLSVAE to predict a mask of pixels that are considered dirty (outliers).

One can use the anomaly score defined in eq. (2.10) for standard VAEs to

obtain a mask. Then only the dirty pixels need to be repaired by CLSVAE,

whilst the rest remain unchanged.

• Testing on more complex errors and real-world data. As pointed

out in Section 4.6, often prior research on data repair, or machine learning

robust to corruption, has been carried out using synthetic error injection

(Liu et al., 2020; Krishnan et al., 2016). For instance, in (Krishnan et al.,

2016; Wang et al., 2017b) use similar corruptions (masking out pixels),

but not for systematic error repair. The main reason for this is precisely

the lack of easily accessible public datasets for the data repair task, where

for proper evaluation one needs the following targets: (a) labelling of all

errors, either anomalous pixels or instances; (b) the ground-truth repairs,

i.e. underlying inliers. This is especially frustrating given that data cleaning

(outlier detection and repair) is quite common in machine learning pipelines.

Though these errors are synthetic, we believe them to be as hard to repair

as several real examples. Particularly given that baseline models seem to

have struggled in these scenarios, and some of them are SOTA models.

Similarly, we can look at the related task of blind-inpainting in images

(Elharrouss et al., 2020; Jam et al., 2021). The goal of blind-inpaiting is to

estimate which pixels are corrupted, or missing, and then infer the value

of those pixels. However, unlike our setup of systematic errors, almost all

of the models for blind-inpainting are trained using clean (uncorrupted)

datasets (Elharrouss et al., 2020; Jam et al., 2021; Dehaene et al., 2019), a

very important difference. It is very common to have experiments mostly

consisting of synthetic errors (Elharrouss et al., 2020; Jam et al., 2021),

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 177

likely due to the lack of curated datasets for research. Specifically, we see

that corruption related to: 1) image coding or transmission often involves

errors as square blocks; 2) image restoration often involves inserting lines

to emulate scratches, camera sensors failing, or watermarks; 3) other mask

shapes can also be used to emulate object removal or occlusion, where often

lines and geometric shapes are used.

Having said that, a valid criticism is that more complex systematic errors

could have been tried, or that real-world examples could have been found.

Unfortunately there was not enough time to pursue this in this chapter,

hence we leave it as future work. Some examples of more complex systematic

errors are: inserting patches of blurred pixels in images in the same location;

scramble patches of pixels in the same exact way for several instances; add

text on top of the images (e.g. watermarks); take a patch of an image and

insert it in the same position for several images in the dataset. In terms of

real-world examples, we can try and curate data from medical imaging where

systematic errors seem to be a problem; or image datasets with real-world

watermarks. In section 4.7.2 we briefly discuss some application scenarios

as well.

• Not all systematic errors may be repaired by CLSVAE. In order

to repair dirty pixels CLSVAE relies on the context given by clean pixels

in a corrupted image. This means a portion of the pixels needs to be clean

or recognizable enough such that CLSVAE can infer the underlying inlier

structure of the image. However, some systematic errors may affect the

entire image and distort all pixels in an image. In this case it is quite

possible that CLSVAE may struggle to repair the data instance. If this

happens, then one solution might to modify CLSVAE to use a different

type of supervision. For instance, one can use paired data instances of the

underlying inlier and corresponding outlier image. It is also possible to

modify the generative prior distributions to cater to specifically difficult

systematic errors. Generally, it will be hard to find one model that without

tailoring it will repair all kinds of systematic errors, for all types of data

(e.g. image, tabular, time-series, natural language).

Chapter 4. Repairing Systematic Outliers via Clean Subspace VAEs 178

4.7.2 Potential Real-World Applications

Medical imaging distortions (e.g. MRI, RX), restoration of images, or resolving

issues related to bad image coding and transmission are possible applications. For

instance, in medical imaging it is not uncommon to find corruptions that are: 1)

similar to occlusion (by objects) as a result of dental or metal implants; 2) imaging

sensor corruption (e.g. lines or objects) due to artifacts or sensor failure. We also

believe that our model can be extended to tackle tabular data, where systematic

errors often appear as data entry issues; data format or unit of measurement

issues from data source merging; or problems with data transmission.

Chapter 5

Conclusion and Future Work

In this thesis, the problem of data cleaning was tackled from the point of view

of combining the steps of outlier detection and data repair. The main reason

being that in a lot of applications the practitioner that is using outlier detection

methods also would want to repair the data later on. In this case, outliers are

a result of corruption that may have its origin in a variety of different processes.

Further, it is often the case that the practitioner needs help identifying the dirty

pixels or cells that make the instance an outlier – i.e. interpretability.

Deep generative models were chosen for their ability to reconstruct and sample

data, which is necessary for data repair. Deep generative models make use of

neural networks as function approximators making them extremely flexible in

terms of capturing complex data distributions. Moreover, they can be quickly

adapted to several data types, such as image data or tabular data. Recently

deep learning models have started to make their way into outlier detection, often

registering SOTA performance.

VAE models were preferred for their simplicity in terms of implementation and

ease of training. VAEs and GANs are very popular both in academia and industry.

However, GANs can be quite unstable in terms of their training and performance.

Therefore, VAEs were picked for this work as a first incursion into deep generative

models that are robust to corruption in the data. Furthermore, the VAE is a

reconstruction-based model and thus it allows for the granularity of cell anomaly

scores. So VAEs can be used to find which dirty cells are to blame for the outlier.

We have tackled the problem of combined outlier detection and data repair for

179

Chapter 5. Conclusion and Future Work 180

two important types of corruption found in real-world data: random errors and

systematic errors. The impact these errors have on generative models is also

different, and thus different strategies of error robustness were devised.

Unsupervised models using data reweighting can handle random error corruption

up to moderate amounts without overfitting to these. This thesis has proposed

a novel data reweighting VAE for mixed-type tabular data, the Robust Varia-

tional Autoencoder (RVAE). The model outperformed or matched baseline model

performance in outlier detection (cell and row) and in data repair.

On the other hand, this unsupervised paradigm is not enough to guarantee good

performance in the case of systematic errors. Systematic errors are a result of

nearly deterministic transformations (plus potentially some noise) that repeatedly

corrupt data instances. The result is a type of corruption that in enough amounts

is very easy to overfit to even for unsupervised robust models. This thesis therefore

presents a novel semi-supervised VAE that learns separate latent codes for clean

patterns and the systematic errors. Only the clean patterns are needed when

reconstructing the underlying inlier (repair). This model is the Clean Subspace

Variational Autoencoder (CLSVAE). The model showed superior performance

compared to baselines, particularly when the labelled set provided is very small.

5.1 Using RVAE and CLSVAE in Practice

In practice, when using either RVAE or CLSVAE, the user needs to have the

needed computational resources at hand. These are deep generative models and

thus they are more computationally demanding compared to classic methods. This

probably includes GPUs, or even servers of these when searching for architectures

or hyperparameters. The user also needs to have some intuition or know already

that the dataset is corrupted and needs to be repaired. This is something that can

be discovered through initial data exploration, using frameworks for that purpose

like OpenRefine, Trifacta or simple Jupyter notebooks with data visualization

packages.

At this point the user already has an idea on what type of corruption is found

therein. If it is mostly random errors than RVAE should be selected. Otherwise, if

the user only wants to repair a few systematic errors found during data exploration,

then CLSVAE should be used. In this case, the user needs to have collected a small

Chapter 5. Conclusion and Future Work 181

labelled set (trusted set) of inliers and more importantly examples of systematic

errors. This can be done during the data visualization and exploration phase.

Alternatively, the user can choose to always apply RVAE first to repair general

random error corruption. Then by inspection, or using a labelled set for validation,

conclude whether the repair process was successful. If it failed, then adjust the

model hyperparameters. If it was successful, then one can now focus on repairing

the remaining systematic errors using CLSVAE, and then rechecking the quality

of the repair.

Throughout the process of cleaning the data thresholds have to be set for each

anomaly score used. This is important for the outlier detection process, as it

determines which instances are considered outliers. In the case of CLSVAE, if

using the classifier therein, it is always good to start with a threshold around

γ ≈ − log(0.5) and then make necessary adjustments. This is because the neural

classifier tends to be more or less calibrated. For RVAE when setting thresholds

for cell outlier detection a similar approach should be taken, and tunning can be

done independently for each feature. Threshold setting is always made easier if a

labelled set of inliers and outliers is available. These can be smaller than typical

validation sets, and can be obtained during data exploration.

Sometimes the goal of data cleaning is to use the repaired data for downstream

tasks. Since RVAE and CLSVAE learn latent representations of clean data, then

downstream task methods could use these for training. This may lead to better

performance than using the repaired data directly. Alternatively, it is also possible

to jointly train the RVAE or CLSVAE and the downstream task model. This

could lead to improved performance not only on the downstream task itself, but

also for the data repair task as well. Since the downstream task can function as

an inductive bias for the data repair process provided by RVAE or CLSVAE.

More specifically, the most typical case is a downstream task that is defined by a

supervised machine learning problem. This means that there is a predictor model

that needs to be learnt on the corrupted dataset to predict some label t. Most

applications are classification or regression problems. Typically, joint training

of a predictor model and a generative model (e.g. RVAE or CLSVAE) is done

by: i) adding to the current generative model training loss an extra training loss

for the downstream predictor model; ii) chain together the generative model and

the predictor model, either by reusing the latent representation z or sampling

Chapter 5. Conclusion and Future Work 182

repaired x from the generative model as input to the predictor to estimate t.

Since these models are trained using automatic differentiation frameworks the

gradients of the predictor model will impact the parameters of generative model.

This assumes that one can differentiate through x or z, as defined in ii), and

thus backpropagation obtains the gradients of the predictor loss w.r.t generative

model parameters. In literature, this type of end-to-end training of the models

is commonly designated as an hybrid model (Nalisnick et al., 2019). It is thus

evident that the downstream model will influence how CLSVAE or RVAE does

data repair.

Still, some improvements can be made to the hybrid model above. For instance,

in some cases the label t is also corrupted in the dataset. For classification tasks,

one option is to apply label smoothing (Müller et al., 2019) to the predictor loss.

This introduces noise or uncertainty to the labels used for training, which will

downweight the contribution of dirty labels. Another option is to estimate the

probability of t being clean, and downweight its contribution if dirty. This can be

done in a similar fashion to how RVAE downweighs dirty cell contributions, e.g.

use a πt and an outlier model for t. On the other hand, including the label t in

the encoder and/or decoder model may also help in capturing outlier information.

For instance, one could concatenate label t to the latent code of CLSVAE at the

decoder input, since the labels could present systematic errors as well. In terms

of reusing the latent space of CLSVAE, typically if the predictor model requires

a clean dataset for training, then zc should be used. Although, using the entire

latent space (zc and zd) can provide the predictor with more information in case

label t is corrupted. Additionally, it may allow for the predictor model to better

capture uncertainty about the instance being predicted. Note that in CLSVAE

the code zc captures inlier information, whilst zd captures error information.

Moreover, the RVAE decoder defined by the generative model in eq. (3.2) should be

able to be used in more complex VAEs. It should not matter if these architectures

are based on Transformers (Vaswani et al., 2017) or ResNets (He et al., 2016),

or have more complex inference schemes like VQVAEs (Razavi et al., 2019b),

since the ELBO of a VAE should always have a reconstruction loss. Further, the

coordinate ascent optimization scheme of RVAE should be applicable as well. It

is possible that the outlier model would need to be adapted in some applications,

or for some data types like counts – e.g. Poisson distribution.

Chapter 5. Conclusion and Future Work 183

Lastly, the CLSVAE approach should be able to be applied to more complex VAE

architectures as well. This should be viable as long as it is possible to segregate

the latent space. However, use of more complex inference schemes should always

be aware of the distance correlation penalty as an optimization constrain (see

eq. 4.14). For instance, one could potentially apply the latent segregation of

CLSVAE – i.e. clean and dirty subspaces, see eq. (4.4) – to each latent layer

of an Hierarchical VAE (Zhao et al., 2017b). This would allow more control on

the level of feature abstraction in terms of error patterns one would want to

remove. Particularly, we would find simpler error patterns at lower layers, and

more complex errors at higher layers. Alternatively, we can just apply at higher

abstraction layers near the VAE bottleneck, if computation complexity is an issue.

5.2 Data Benchmarks and Frameworks

In the data science pipeline the data cleaning process is quite important. It is often

a necessary step so that machine learning models can be trained and deployed

correctly, but also so that the data can be stored for further applications. Two

steps often applied together in the data cleaning process are outlier detection,

followed by data repair. The problem combined outlier detection and data repair

is thus an important one.

One issue we have had during the work in this thesis is the lack of frameworks

and dataset benchmarks. Most outlier detection benchmark datasets only focus

on labelled instances, and never cells or pixels – e.g. (McHugh, 2000, KDD 99),

(Keller et al., 2012, Thyroid), (Liu et al., 2008, Satellite), (Ruff et al., 2021, see

Table III), benchmark framework (Emmott et al., 2015), and benchmark repository

(Rayana, 2016). This is important since quite a few outliers are due to corruption,

and thus outliers are caused by specific features being affected. On the other hand,

from a data repair perspective, very few datasets provide the actual ground-truth

inlier corresponding to an outlier. Most often published works rely on synthetic

corruption processes, often specific for that paper in question. This makes model

benchmarking more difficult across literature.

The machine learning and database communities should therefore come together

and define a set of agreed upon dataset benchmarks that can be used for model

development. Alternatively, the communities could promote and jointly develop

Chapter 5. Conclusion and Future Work 184

a software framework for synthetic dataset corruption. Frameworks for data

synthesis in tabular or image data already exist, so that could be a starting point

for one focusing on corrupt data. This will help researchers in the field greatly,

and in the end benefit the practitioner with new and improved models.

5.3 Going Forward on Robust Generative Models

There are a few potential paths forward for novel robust deep generative models.

Here a few of these options are discussed more abstractly.

One way is leveraging multi-modal data in novel generative models capable of

outlier detection and repair. The idea is that one modality of the data can help

in repairing the other, and vice-versa. As an example, many real-world datasets

include instances that have a part being a row from a table and then an image of

an object. Two use cases seem relevant: electronic retailer (e.g. Amazon, eBay)

database with product descriptions in a table, and then images of said products;

secondly, in healthcare datasets often include medical imaging and other medical

tests in tables for each patient.

In this thesis we focused on using labelled data when tackling systematic errors.

This is because it is easier during data exploration to obtain a few labelled

instances, than to obtain logic rules or data cleaning scripts. Having said that,

sometimes rules or some other templates could be sourced together with the data,

or perhaps by the use of paid subject-matter experts. In this scenario, it makes

sense to have a deep generative model that can encode this information into the

model as prior knowledge. This inductive bias would then be used to make the

model robust to outliers during training. An interesting starting point could be

to combine either RVAE or CLSVAE with differentiable relaxations of first-order

logic, which would express the data quality constraints.

We mainly focused on MAP estimation of repairs using VAEs. Although in

Chapter 3 we provided an alternative using pseudo-Gibbs sampling (MCMC) for

RVAE, where we only saw very marginal improvements. It is quite possible that

other types of inference methods or generative models (e.g. GANs, normalizing

flows) could prove superior. For instance semi-amortized VAEs (Kim et al., 2018)

could potentially enhance the quality of the inferred repair for VAEs. Energy-

based models tend to use MCMC sampling during training and inference, and are

Chapter 5. Conclusion and Future Work 185

capable of high-fidelity image inpaiting (Du & Mordatch, 2019; Dehaene et al.,

2019).

Nowadays the success of diffusion models is apparent in the field of deep generative

models – see Section 2.4 for more details. Although most works have focused

on image data, more recently tabular data has also been explored (Kotelnikov

et al., 2022). There might be a more clear extension of diffusion models for outlier

detection and data repair in the case of systematic error corruption. Since the

impact of random errors is yet to be properly evaluated in diffusion models.

For instance, one could define a conditional diffusion model that uses a trusted

set for systematic error repair – like CLSVAE in Chapter 4. One option is to use

a classifier guided diffusion model (Dhariwal & Nichol, 2021), where a classifier is

first trained on the trusted set (noised with the forward diffusion process) to learn

to distinguish inliers from outliers. We also assume one has access to a diffusion

model trained on the corrupted dataset. The diffusion sampling process of the

model will explicitly include gradient information from the classifier in order to

condition on y. Therefore, at repair time, the outlier instances can be repaired by

setting y = 1 (inlier) in the sampling process, after the forward diffusion process

has been applied to the instance. Alternatively, and perhaps a better performing

solution, is to use classifier-free guidance (GLIDE) (Nichol et al., 2021) as the

conditional diffusion model. In this case labels y are used during training of the

diffusion model. Though GLIDE is a supervised model, perhaps modifications

can be made to make it semi-supervised for use with a trusted set.

One could use a contrastive learning approach (Chen et al., 2020; Zbontar et al.,

2021) for outlier detection and data repair. Contrastive learning has gained popu-

larity recently due to being quite effective in representation learning. For instance,

it can be used if there is a dataset of paired inliers and outliers already; or perhaps

if the corruption process can be accessed (e.g. simulated, data augmentation) to

get these pairs. One use case could be datasets corrupted with systematic errors.

In this case, then one can use contrastive learning to learn a representation in an

embedding space where underlying inliers and their corrupted versions (outliers)

are close together. If the task is data repair, then these learned representations

can be reused to train a generative model like a VAE. In this case, the pre-trained

encoder from the contrastive learning model would be used to train an additional

generator (decoder) network that repairs the data. In terms of outlier detection,

Chapter 5. Conclusion and Future Work 186

one could potentially use the aforementioned generator to get an anomaly score.

On the other hand, these learned representations can also be directly reused

to train a downstream task model that requires repaired data (or embeddings).

Inspired by Ren et al., one could also use contrastive learning directly to learn a

generative model that disentangles in the latent space inliers from error patterns

(outliers). Like CLSVAE, this model could then be used for both outlier detection

and repair.

5.4 An Outlook of the Problem in 2022

In this section a short discussion is provided about tackling the thesis problem in

2022. Once more, in this thesis we have focused on specific data cleaning tasks.

In particular, outlier detection and subsequent data repair. Still, we will also try

to give a broader outlook on machine learning (ML) for data cleaning.

If one were to start in 2022, given existing work, then one should first focus on

promoting with other researchers (or industry) a common benchmark or framework

for evaluation. As previously discussed, it is often difficult to compare models

for outlier detection or data repair since they use different synthetic corruption

processes, or even datasets. Standardizing evaluation metrics would also be

important. Additionally, interpretability for outlier detection and cell outlier

detection are still quite relevant today. Further, much work is still needed on

improving generative models for outlier detection and subsequent data repair.

Interesting directions are perhaps other model types like diffusion models, or new

inference schemes in VAE models for better repair quality.

Now we discuss some specific ongoing opportunities or research directions in

machine learning for data cleaning.

• Robust Generative Modelling for Data Cleaning Recently diffusion

models have been registering state-of-the-art performance in image datasets

(see Section 2.4). Moreover, there are ongoing efforts to extend these to

tabular data (Dhariwal & Nichol, 2021). Thus interesting directions would

be diffusion models that are robust to outliers. Alternatively, there are

still opportunities to improve inference schemes in robust VAEs for tabular

data. Particularly, new inference schemes going beyond MAP estimation

of data repair. For instance, extending or modifying MCMC methods for

Chapter 5. Conclusion and Future Work 187

VAEs that are robust to outliers. A recent example in the related field of

data imputation (Peis et al.) is using Hamiltonian Monte Carlo (HMC)

in Hierarchical VAEs for tabular data. This strategy could be adapted

for robust VAEs. Transformer (Vaswani et al., 2017) based architectures

for tabular data have become more relevant, even in outlier detection (Liu

et al., 2020). There is space for improvement still. Moreover, generative

models that take advantage of concepts like data instance memorization

(in neural networks) (Arpit et al., 2017; Feldman & Zhang, 2020), or data

instance influence on model parameters (Koh & Liang, 2017; Hara et al.,

2019) are also good research directions. Particularly, it can prove useful in

outlier detection, and in downweighting said outliers during training, thus

providing robustness. More discussion about these concepts (memorization

and influence) can be seen in Section 2.2.

• ML for Multi-modal Data Cleaning Quite a few datasets in the

real-world are a combination of structured data (e.g. tabular data) with

unstructured data (e.g. images, text). These types of datasets are often

called multi-modal, since they combine different modes of data. The example

used in Section 5.3 was that of an online retailer with a product catalogue.

But there are many other examples in industry. Therefore, a trend that will

continue to grow is deep learning models (e.g. Transformers (Vaswani et al.,

2017)) that perform data cleaning in multi-modal datasets. For instance,

extending current robust generative models to handle both tabular data and

text.

• Data Cleaning for Downstream Tasks There should be continued

interest in ML models that adapt outlier detection or data repair processes

to downstream tasks of interest. For instance, generative models for data

repair that are jointly trained with the downstream task model – i.e. hybrid

models (Nalisnick et al., 2019). Often data cleaning can be quite specific

depending on the machine learning model being trained down the line.

Further, the downstream task can bias the data cleaning procedure in order

to improve its performance. This makes sense as practitioners often work

on entire machine learning pipelines, and usually there is some dependency

between the different pipeline steps. Going a step further, it is possible that

automated machine learning (AutoML) (Karmaker et al., 2021, Table 1.) for

Chapter 5. Conclusion and Future Work 188

data cleaning that takes into consideration downstream task performance is

a better solution. The AutoML model would combine typical data cleaning

procedures and user defined ones, e.g. (Krishnan et al., 2016). Therefore,

this joint perspective should continue to grow in importance.

• Weak-Supervision or User Interaction for Data Cleaning In

machine learning, often labelled datasets are expensive or impractical to

obtain, even if tools like crowdsourcing are available. This is particularly

true for outlier detection, but also other steps in data cleaning. The data

cleaning step is often a very bespoke process that takes into consideration

particular datasets or applications. As such, user input or interaction is

often a must. Semi-supervised models that handle small trusted sets are

one option, however in some cases this might not be enough to get good

performance. Another option is to estimate which instances are most relevant

and ask user feedback, i.e. active learning (Ren et al., 2021). For instance,

this can be a way to make robust generative models more adaptable to user

needs. On the other hand, one can use predefined programs or patterns

to label several instances before training an outlier detection / data repair

model, i.e. weak-supervision (Ratner et al., 2017; Zhang et al., 2022; Shin

et al., 2021). Further, one could embed such prior knowledge directly in the

model (Rekatsinas et al., 2017; Rühling Cachay et al., 2021; Lew et al., 2021).

Examples of weak-supervision are heuristics, logic rules, scripts, ontologies

and even other simpler models. There should be continued interest in novel

machine learning models for data cleaning that take direct user feedback.

• Frameworks for Evaluating Data Cleaning Once more, as mentioned

in Section 5.2, developing new software frameworks for benchmarking data

cleaning algorithms should be a focus of the research community. This will

prove particularly useful in outlier detection and in data repair tasks. But

perhaps can be extended to other data cleaning tasks, e.g. data imputa-

tion or de-duplication. However, it is not clear whether the community

will actually converge on this, despite a clear opportunity and need. For

instance, similar efforts have been carried out for tabular data synthesis, e.g.

SDGym1. SDGym framework defines datasets, synthesizers (i.e. generative

model baselines), and evaluation (e.g. data quality metrics, privacy metrics,

1https://github.com/sdv-dev/SDGym

https://github.com/sdv-dev/SDGym

Chapter 5. Conclusion and Future Work 189

computation time). Another example is Cleanlab2 a software framework for

cleaning noisy labels, where some support is given to benchmarking and

standardization of synthetic noise injection for labels. The framework also

provides a strong baseline, and curates a database of known noisy labels in

machine learning datasets – Label Errors in ML Test Sets3. Alternatively,

one can use existing online frameworks like OpenML4 to share benchmarks,

datasets, models and metrics for data cleaning tasks. Perhaps the aforemen-

tioned frameworks could serve as inspiration for the ML for data cleaning

community.

• Data Cleaning under Privacy Constraints In the last few years data

privacy has become quite important in machine learning, both in terms of

model training and model deployment. For example, the field of differential

privacy (Dwork et al., 2014) in machine learning has grown spectacularly.

However, the same privacy constraints still exist in the data cleaning step

of the machine learning pipeline. One option is to generate synthetic data

that is considered safe, i.e. complies with privacy constraints, and then data

cleaning tasks are applied. For instance, synthetic data can be obtained by

sampling a generative model (Zhang et al., 2017; Jordon et al., 2019) that

complies with the definition of differential privacy. But this might not be

an ideal arrangement, and may result in loss of data quality for downstream

tasks. Another option is to develop a generative model that adheres to

privacy constraints, and performs the much needed data repair. So there

should be ample opportunities for researchers in this space.

• Data Cleaning in Graph Datasets Until recently, the most popular

type of structured dataset in industry was tabular data. However, graph

structured datasets have become common in many companies like online

retailers, social networks, pharmaceuticals or even in financial data. More-

over, there has been considerable research in the last few years in machine

learning models for graph datasets (Xia et al., 2021). Particularly in deep

learning (Gilmer et al., 2017; Waleffe et al., 2022). Still, very few works have

explored ML for data cleaning in the presence of graph datasets (Heidari

et al., 2020). Therefore, there should be ample interest and opportunities in

2https://github.com/cleanlab/cleanlab
3https://labelerrors.com/
4https://www.openml.org/

https://github.com/cleanlab/cleanlab
https://labelerrors.com/
https://www.openml.org/

Chapter 5. Conclusion and Future Work 190

this line of research.

• Fairness in Data Cleaning Machine learning fairness (Caton & Haas,

2020) is concerned with correcting or mitigating algorithmic biases (e.g.

nationality, gender, disability) in machine learning models. It is quite

possible that the current data repair models may produce repairs that are

unfair, since they might be based on data features considered sensitive by

society. This analysis can be further extended to both outlier detection, and

the related field of data imputation. Hence, there are clear opportunities

to study fairness in the field of data cleaning. Firstly, researchers should

assess if current models produce biased repairs, and which biases need to be

corrected. Secondly, researchers should propose novel models that produce

unbiased data repairs, where user input can be accounted for.

Bibliography

Abubakar Abid, Muhammad Fatih Balin, and James Zou. Concrete autoen-

coders for differentiable feature selection and reconstruction. arXiv preprint

arXiv:1901.09346, 2019.

Charu C Aggarwal. Outlier analysis second edition, 2016.

S Aigrain, H Parviainen, S Roberts, S Reece, and T Evans. Robust, open-source

removal of systematics in kepler data. Monthly Notices of the Royal Astronomical

Society, 471(1):759–769, 2017.

Yariv Aizenbud, Ofir Lindenbaum, and Yuval Kluger. Probabilistic robust au-

toencoders for anomaly detection. arXiv preprint arXiv:2110.00494, 2021.

Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly

detection and description: a survey. Data mining and knowledge discovery, 29

(3):626–688, 2015.

H. Akrami, Anand A. Joshi, J. Li, and R. Leahy. Robust variational autoencoder.

ArXiv, abs/1905.09961, 2019a.

Haleh Akrami, Anand A. Joshi, Jian Li, and Richard M. Leahy. Robust variational

autoencoder, 2019b.

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and

Kevin Murphy. Fixing a broken elbo. In International Conference on Machine

Learning, pp. 159–168. PMLR, 2018.

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection

using reconstruction probability. Special Lecture on IE, 2:1–18, 2015.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel

Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville,

191

Bibliography 192

Yoshua Bengio, et al. A closer look at memorization in deep networks. In

International conference on machine learning, pp. 233–242. PMLR, 2017.

Francis R Bach and Michael I Jordan. Kernel independent component analysis.

Journal of machine learning research, 3(Jul):1–48, 2002.

Chenglong Bao, Jian-Feng Cai, and Hui Ji. Fast sparsity-based orthogonal dictio-

nary learning for image restoration. In Proceedings of the IEEE International

Conference on Computer Vision, pp. 3384–3391, 2013.

Jonathan T Barron. A general and adaptive robust loss function. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 4331–4339, 2019.

Stephen D Bay and Mark Schwabacher. Mining distance-based outliers in near

linear time with randomization and a simple pruning rule. In Proceedings of

the ninth ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 29–38, 2003.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:

A review and new perspectives. IEEE transactions on pattern analysis and

machine intelligence, 35(8):1798–1828, 2013.

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer,

2006.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawel-

czyk, and Gjergji Kasneci. Deep neural networks and tabular data: A survey.

arXiv preprint arXiv:2110.01889, 2021.

Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level varia-

tional autoencoder: Learning disentangled representations from grouped ob-

servations. In Proceedings of the AAAI Conference on Artificial Intelligence,

2018.

Ajay Kumar Boyat and Brijendra Kumar Joshi. A review paper: noise models in

digital image processing. arXiv preprint arXiv:1505.03489, 2015.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.

Distributed optimization and statistical learning via the alternating direction

Bibliography 193

method of multipliers. Foundations and Trends® in Machine learning, 3(1):

1–122, 2011.

Gustav Bredell, Kyriakos Flouris, Krishna Chaitanya, Ertunc Erdil, and Ender

Konukoglu. Explicitly minimizing the blur error of variational autoencoders. In

Submission ICLR 2023, 2022.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:

identifying density-based local outliers. In Proceedings of the 2000 ACM SIG-

MOD international conference on Management of data, pp. 93–104, 2000.

Coleman Broaddus, Alexander Krull, Martin Weigert, Uwe Schmidt, and Gene

Myers. Removing structured noise with self-supervised blind-spot networks. In

2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp.

159–163. IEEE, 2020.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for

high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Yuri Burda, Roger B Grosse, and Ruslan Salakhutdinov. Importance weighted

autoencoders. In ICLR (Poster), 2016.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters,

Guillaume Desjardins, and Alexander Lerchner. Understanding disentangling

in β-vae. arXiv preprint arXiv:1804.03599, 2018.

Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal

component analysis? Journal of the ACM (JACM), 58(3):1–37, 2011.

Miguel A Carreira-Perpinan and Geoffrey Hinton. On contrastive divergence

learning. In International workshop on artificial intelligence and statistics, pp.

33–40. PMLR, 2005.

Simon Caton and Christian Haas. Fairness in machine learning: A survey. arXiv

preprint arXiv:2010.04053, 2020.

Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection:

A survey. arXiv preprint arXiv:1901.03407, 2019.

Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly

detection using one-class neural networks. arXiv preprint arXiv:1802.06360,

2018a.

Bibliography 194

Raghavendra Chalapathy, Edward Toth, and Sanjay Chawla. Group anomaly

detection using deep generative models. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, pp. 173–189. Springer,

2018b.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A

survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit:

Masked generative image transformer. arXiv preprint arXiv:2202.04200, 2022.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang,

Ming-Hsuan Yang, Kevin Murphy, William T Freeman, Michael Rubinstein,

et al. Muse: Text-to-image generation via masked generative transformers.

arXiv preprint arXiv:2301.00704, 2023.

Sanjay Chawla and Aristides Gionis. k-means–: A unified approach to clustering

and outlier detection. In Proceedings of the 2013 SIAM international conference

on data mining, pp. 189–197. SIAM, 2013.

Chaitanya Chemudugunta, Padhraic Smyth, and Mark Steyvers. Modeling general

and specific aspects of documents with a probabilistic topic model. In NIPS,

2006.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacob-

sen. Residual flows for invertible generative modeling. Advances in Neural

Information Processing Systems, 32, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In International

conference on machine learning, pp. 1597–1607. PMLR, 2020.

Yanzhi Chen, Dinghuai Zhang, Michael U. Gutmann, Aaron Courville, and

Zhanxing Zhu. Neural approximate sufficient statistics for implicit models. In

Ninth International Conference on Learning Representations (ICLR 2021), May

2021. URL https://iclr.cc/Conferences/2021/Dates. Ninth International

Conference on Learning Representations 2021, ICLR 2021 ; Conference date:

04-05-2021 Through 07-05-2021.

Rewon Child. Very deep vaes generalize autoregressive models and can outperform

https://iclr.cc/Conferences/2021/Dates

Bibliography 195

them on images. In International Conference on Learning Representations,

2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long

sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse

image synthesis for multiple domains. 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 8185–8194, 2020.

Xu Chu, Ihab F Ilyas, and Paolo Papotti. Discovering denial constraints. Proceed-

ings of the VLDB Endowment, 6(13):1498–1509, 2013a.

Xu Chu, Ihab F Ilyas, and Paolo Papotti. Holistic data cleaning: Putting violations

into context. In 2013 IEEE 29th International Conference on Data Engineering

(ICDE), pp. 458–469. IEEE, 2013b.

Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,

and Yin Ye. Katara: A data cleaning system powered by knowledge bases

and crowdsourcing. In Proceedings of the 2015 ACM SIGMOD international

conference on management of data, pp. 1247–1261, 2015.

Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. Data cleaning:

Overview and emerging challenges. In Proceedings of the 2016 international

conference on management of data, pp. 2201–2206, 2016.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence

function for detecting influential cases in regression. Technometrics, 22(4):

495–508, 1980.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,

20(3):273–297, 1995.

Bin Dai, Ziyu Wang, and David Wipf. The usual suspects? reassessing blame for

vae posterior collapse. In International Conference on Machine Learning, pp.

2313–2322. PMLR, 2020.

Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F

Ilyas, Mourad Ouzzani, and Nan Tang. Nadeef: a commodity data cleaning

system. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data, pp. 541–552, 2013.

Bibliography 196

Robert B Dean and William J Dixon. Simplified statistics for small numbers of

observations. Analytical chemistry, 23(4):636–638, 1951.

David Dehaene, Oriel Frigo, Sébastien Combrexelle, and Pierre Eline. Iterative

energy-based projection on a normal data manifold for anomaly localization. In

International Conference on Learning Representations, 2019.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal Statistical

Society: Series B (Methodological), 39(1):1–22, 1977.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image

synthesis. Advances in Neural Information Processing Systems, 34:8780–8794,

2021.

Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt,

and Alistair Stewart. Sever: A robust meta-algorithm for stochastic optimization.

arXiv preprint arXiv:1803.02815, 2018.

Shi Dong, Ping Wang, and Khushnood Abbas. A survey on deep learning and its

applications. Computer Science Review, 40:100379, 2021.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based

models. Advances in Neural Information Processing Systems, 32, 2019.

Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mordatch. Improved contrastive

divergence training of energy based models. arXiv preprint arXiv:2012.01316,

2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of machine learning

research, 12(7), 2011.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural

spline flows. Advances in neural information processing systems, 32, 2019.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential

privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):

211–407, 2014.

Simao Eduardo, Alfredo Nazábal, Christopher KI Williams, and Charles Sutton.

Robust variational autoencoders for outlier detection and repair of mixed-type

Bibliography 197

data. In International Conference on Artificial Intelligence and Statistics, pp.

4056–4066. PMLR, 2020.

Omar Elharrouss, Noor Almaadeed, Somaya Al-Maadeed, and Younes Akbari.

Image inpainting: A review. Neural Processing Letters, 51(2):2007–2028, 2020.

Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-

Keen Wong. A meta-analysis of the anomaly detection problem. arXiv preprint

arXiv:1503.01158, 2015.

Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, Narayanaswamy Sid-

dharth, Brooks Paige, Dana H Brooks, Jennifer Dy, and Jan-Willem Meent.

Structured disentangled representations. In The 22nd International Conference

on Artificial Intelligence and Statistics, pp. 2525–2534. PMLR, 2019.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for

high-resolution image synthesis. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 12873–12883, 2021.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I. Williams,

John M. Winn, and Andrew Zisserman. The pascal visual object classes

challenge: A retrospective. International Journal of Computer Vision, 111:

98–136, 2014.

Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John

Winn, and Andrew Zisserman. The pascal visual object classes challenge: A

retrospective. International journal of computer vision, 111(1):98–136, 2015.

Wenfei Fan. Data quality: From theory to practice. Acm Sigmod Record, 44(3):

7–18, 2015.

Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional

functional dependencies for capturing data inconsistencies. ACM Transactions

on Database Systems (TODS), 33(2):1–48, 2008.

Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering condi-

tional functional dependencies. IEEE Transactions on Knowledge and Data

Engineering, 23(5):683–698, 2010.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and

Bibliography 198

why: Discovering the long tail via influence estimation. Advances in Neural

Information Processing Systems, 33:2881–2891, 2020.

Diego Fernández-Francos, Óscar Fontenla-Romero, and Amparo Alonso-Betanzos.

One-class convex hull-based algorithm for classification in distributed environ-

ments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(2):

386–396, 2017.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic

relational models. In IJCAI, volume 99, pp. 1300–1309, 1999.

Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Çelikyilmaz, and

Lawrence Carin. Cyclical annealing schedule: A simple approach to mitigating

kl vanishing. In NAACL, 2019.

Futoshi Futami, Issei Sato, and Masashi Sugiyama. Variational inference based

on robust divergences. In AISTATS, 2018.

M. J. F. Gales and Peder A. Olsen. Tail distribution modelling using the richter and

power exponential distributions. In Sixth European Conference on Speech Com-

munication and Technology, EUROSPEECH 1999, Budapest, Hungary, Septem-

ber 5-9, 1999. ISCA, 1999a. URL http://www.isca-speech.org/archive/

eurospeech_1999/e99_1507.html.

Mark John Francis Gales and Peder A. Olsen. Tail distribution modelling using

the richter and power exponential distributions. In EUROSPEECH, 1999b.

Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. The

llunatic data-cleaning framework. Proceedings of the VLDB Endowment, 6(9):

625–636, 2013.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made:

Masked autoencoder for distribution estimation. In International Conference

on Machine Learning, pp. 881–889. PMLR, 2015.

Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard

http://www.isca-speech.org/archive/eurospeech_1999/e99_1507.html
http://www.isca-speech.org/archive/eurospeech_1999/e99_1507.html

Bibliography 199

Schölkopf. From variational to deterministic autoencoders. arXiv preprint

arXiv:1903.12436, 2019.

Amol Ghoting, Srinivasan Parthasarathy, and Matthew Eric Otey. Fast mining

of distance-based outliers in high-dimensional datasets. Data Mining and

Knowledge Discovery, 16(3):349–364, 2008.

Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte

Carlo in practice. CRC press, 1995.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. Neural message passing for quantum chemistry. In International conference

on machine learning, pp. 1263–1272. PMLR, 2017.

Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised

anomaly detection algorithms for multivariate data. PloS one, 11(4):e0152173,

2016.

Gene H Golub, Per Christian Hansen, and Dianne P O’Leary. Tikhonov regulariza-

tion and total least squares. SIAM journal on matrix analysis and applications,

21(1):185–194, 1999.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

Advances in neural information processing systems, 27, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Toward supervised

anomaly detection. Journal of Artificial Intelligence Research, 46:235–262, 2013.

Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han. Outlier detection

for temporal data: A survey. IEEE Transactions on Knowledge and data

Engineering, 26(9):2250–2267, 2013.

Hermanni Hälvä, Sylvain Le Corff, Luc Lehéricy, Jonathan So, Yongjie Zhu,

Elisabeth Gassiat, and Aapo Hyvarinen. Disentangling identifiable features

from noisy data with structured nonlinear ica. Advances in Neural Information

Processing Systems, 34, 2021.

Bibliography 200

Hannes Hapke and Catherine Nelson. Building machine learning pipelines. O’Reilly

Media, 2020.

Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models

trained with sgd. Advances in Neural Information Processing Systems, 32, 2019.

Douglas M Hawkins. Identification of outliers, volume 11. Springer, 1980.

Louay Hazami, Rayhane Mama, and Ragavan Thurairatnam. Efficient-vdvae:

Less is more. arXiv preprint arXiv:2203.13751, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016.

David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Roun-

thwaite, and Carl Kadie. Dependency networks for inference, collaborative

filtering, and data visualization. Journal of Machine Learning Research, 1(Oct):

49–75, 2000.

Alireza Heidari, Ihab F Ilyas, and Theodoros Rekatsinas. Approximate inference

in structured instances with noisy categorical observations. In Uncertainty in

Artificial Intelligence, pp. 412–421. PMLR, 2020.

Joseph M Hellerstein. Quantitative data cleaning for large databases. United

Nations Economic Commission for Europe (UNECE), 25:1–42, 2008.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robust-

ness to common corruptions and perturbations. International Conference on

Learning Representations (ICLR), abs/1807.01697, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-

of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136,

2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and

out-of-distribution examples in neural networks. International Conference on

Learning Representations (ICLR), abs/1610.02136, 2017.

Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. Deep anomaly

detection with outlier exposure. International Conference on Learning Repre-

sentations (ICLR), abs/1812.04606, 2019.

Bibliography 201

Shohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, and Takafumi

Kanamori. Statistical outlier detection using direct density ratio estimation.

Knowledge and Information Systems, 26(2):309–336, 2011.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,

Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae:

Learning basic visual concepts with a constrained variational framework. 2016.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++:

Improving flow-based generative models with variational dequantization and

architecture design. In International Conference on Machine Learning, pp.

2722–2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic

models. Advances in Neural Information Processing Systems, 33:6840–6851,

2020.

Victoria Hodge and Jim Austin. A survey of outlier detection methodologies.

Artificial Intelligence Review, 22(2):85–126, 2004.

Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised learning of disentangled

and interpretable representations from sequential data. Advances in neural

information processing systems, 30, 2017.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in

statistics, pp. 492–518. Springer, 1992.

Peter J Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-

contrastive learning and nonlinear ica. Advances in Neural Information Pro-

cessing Systems, 29, 2016.

Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. Diva:

Domain invariant variational autoencoders. In Medical Imaging with Deep

Learning, pp. 322–348. PMLR, 2020.

Ihab F Ilyas and Xu Chu. Trends in cleaning relational data: Consistency and

deduplication. Foundations and Trends in Databases, 5(4):281–393, 2015.

Ihab F Ilyas and Xu Chu. Data cleaning. Morgan & Claypool, 2019.

Bibliography 202

Ihab F Ilyas and Theodoros Rekatsinas. Machine learning and data cleaning:

Which serves the other? ACM Journal of Data and Information Quality (JDIQ),

2020.

Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. not-miwae: Deep

generative modelling with missing not at random data. In International Con-

ference on Learning Representations, 2020.

Abdul Jabbar, Xi Li, and Bourahla Omar. A survey on generative adversarial

networks: Variants, applications, and training. ACM Computing Surveys

(CSUR), 54:1 – 49, 2022.

Jireh Jam, Connah Kendrick, Kevin Walker, Vincent Drouard, Jison Gee-Sern

Hsu, and Moi Hoon Yap. A comprehensive review of past and present image

inpainting methods. Computer vision and image understanding, 203:103147,

2021.

Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace

diffusion generative models. In Computer Vision–ECCV 2022: 17th European

Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIII, pp.

274–289. Springer, 2022.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent

developments. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 374(2065):20150202, 2016.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.

Saul. An introduction to variational methods for graphical models. Machine

Learning, 37:183–233, 1999.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating

synthetic data with differential privacy guarantees. In International conference

on learning representations, 2018.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating

synthetic data with differential privacy guarantees. In International conference

on learning representations, 2019.

Tom Joy, Sebastian Schmon, Philip Torr, N Siddharth, and Tom Rainforth.

Bibliography 203

Capturing label characteristics in vaes. In International Conference on Learning

Representations, 2020.

Heewoo Jun, Rewon Child, Mark Chen, John Schulman, Aditya Ramesh, Alec

Radford, and Ilya Sutskever. Distribution augmentation for generative modeling.

In International Conference on Machine Learning, pp. 5006–5019. PMLR, 2020.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler:

Interactive visual specification of data transformation scripts. In ACM Human

Factors in Computing Systems (CHI), 2011. URL http://vis.stanford.edu/

papers/wrangler.

Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengxiang

Zhai, and Kalyan Veeramachaneni. Automl to date and beyond: Challenges

and opportunities. ACM Computing Surveys (CSUR), 54(8):1–36, 2021.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and

Timo Aila. Training generative adversarial networks with limited data. Advances

in neural information processing systems, 33:12104–12114, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko

Lehtinen, and Timo Aila. Alias-free generative adversarial networks. Advances

in Neural Information Processing Systems, 34:852–863, 2021.

Gregor Kasieczka, Benjamin Nachman, and David Shih. New methods and

datasets for group anomaly detection from fundamental physics. arXiv preprint

arXiv:2107.02821, 2021.

Fabian Keller, Emmanuel Muller, and Klemens Bohm. Hics: High contrast

subspaces for density-based outlier ranking. In 2012 IEEE 28th international

conference on data engineering, pp. 1037–1048. IEEE, 2012.

Wesley Khademi, Sonia Rao, Clare Minnerath, Guy Hagen, and Jonathan Ventura.

Self-supervised poisson-gaussian denoising. In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, pp. 2131–2139, 2021.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Varia-

tional autoencoders and nonlinear ica: A unifying framework. In International

Conference on Artificial Intelligence and Statistics, pp. 2207–2217. PMLR, 2020.

http://vis.stanford.edu/papers/wrangler
http://vis.stanford.edu/papers/wrangler

Bibliography 204

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International

Conference on Machine Learning, pp. 2649–2658. PMLR, 2018.

JooSeuk Kim and Clayton D Scott. Robust kernel density estimation. The Journal

of Machine Learning Research, 13(1):2529–2565, 2012.

Yoon Kim, Sam Wiseman, Andrew Miller, David Sontag, and Alexander Rush.

Semi-amortized variational autoencoders. In International Conference on Ma-

chine Learning, pp. 2678–2687. PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd

International Conference on Learning Representations, ICLR 2014, Banff, AB,

Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

Diederik P Kingma and Max Welling. An introduction to variational autoencoders.

arXiv preprint arXiv:1906.02691, 2019.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible

1x1 convolutions. Advances in neural information processing systems, 31, 2018.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.

Semi-supervised learning with deep generative models. In Advances in neural

information processing systems, pp. 3581–3589, 2014.

Guenter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

Self-normalizing neural networks. In NIPS, 2017.

Jack Klys, J. Snell, and R. Zemel. Learning latent subspaces in variational

autoencoders. In NeurIPS, 2018.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence

functions. In International conference on machine learning, pp. 1885–1894.

PMLR, 2017.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning

attacks break data sanitization defenses. arXiv preprint arXiv:1811.00741,

2018.

Solmaz Kolahi and Laks VS Lakshmanan. On approximating optimum repairs

Bibliography 205

for functional dependency violations. In Proceedings of the 12th International

Conference on Database Theory, pp. 53–62, 2009.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko.

Tabddpm: Modelling tabular data with diffusion models. arXiv preprint

arXiv:2209.15421, 2022.

Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Gold-

berg. Activeclean: Interactive data cleaning for statistical modeling. Proceedings

of the VLDB Endowment, 9(12):948–959, 2016.

Sanjay Krishnan, Michael J Franklin, Ken Goldberg, and Eugene Wu. Boostclean:

Automated error detection and repair for machine learning. arXiv preprint

arXiv:1711.01299, 2017.

Jonathan Kropko, Ben Goodrich, Andrew Gelman, and Jennifer Hill. Multiple

imputation for continuous and categorical data: comparing joint multivariate

normal and conditional approaches. Political Analysis, 22(4), 2014.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational

inference of disentangled latent concepts from unlabeled observations. arXiv

preprint arXiv:1711.00848, 2017.

Aditya Kunar, Robert Birke, Zilong Zhao, and Lydia Chen. Dtgan: Differential

private training for tabular gans. arXiv preprint arXiv:2107.02521, 2021.

Mikael Kuusela, Tommi Vatanen, Eric Malmi, Tapani Raiko, Timo Aaltonen,

and Yoshikazu Nagai. Semi-supervised anomaly detection–towards model-

independent searches of new physics. In Journal of Physics: Conference Series,

volume 368, pp. 012032. IOP Publishing, 2012.

Ivy Kwok and Raymond Ng. Fast computation of 2-dimensional depth contours.

1998.

Chieh-Hsin Lai, Dongmian Zou, and Gilad Lerman. Robust subspace recovery

layer for unsupervised anomaly detection. In International Conference on

Learning Representations, 2019.

Chieh-Hsin Lai, Dongmian Zou, and Gilad Lerman. Novelty detection via robust

variational autoencoding. arXiv preprint arXiv:2006.05534, 2020.

Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic

Bibliography 206

Denoyer, and Marc’Aurelio Ranzato. Fader networks: Manipulating images by

sliding attributes. Advances in neural information processing systems, 30, 2017.

Charline Le Lan and Laurent Dinh. Perfect density models cannot guarantee

anomaly detection. arXiv preprint arXiv:2012.03808, 2020.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial

on energy-based learning. Predicting structured data, 1(0), 2006.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-

calibrated classifiers for detecting out-of-distribution samples. International

Conference on Learning Representations (ICLR), abs/1711.09325, 2018.

Alexander Lew, Monica Agrawal, David Sontag, and Vikash Mansinghka. Pclean:

Bayesian data cleaning at scale with domain-specific probabilistic programming.

In International Conference on Artificial Intelligence and Statistics, pp. 1927–

1935. PMLR, 2021.

Yingzhen Li and Stephan Mandt. Disentangled sequential autoencoder. arXiv

preprint arXiv:1803.02991, 2018.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.

uci.edu/ml.

Chieh Hubert Lin, Hsin-Ying Lee, Yen-Chi Cheng, Sergey Tulyakov, and Ming-

Hsuan Yang. Infinitygan: Towards infinite-pixel image synthesis. arXiv preprint

arXiv:2104.03963, 2021.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso

Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram

Van Ginneken, and Clara I Sánchez. A survey on deep learning in medical

image analysis. Medical image analysis, 42:60–88, 2017.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth

ieee international conference on data mining, pp. 413–422. IEEE, 2008.

Yi Liu and Yuan F Zheng. Minimum enclosing and maximum excluding machine

for pattern description and discrimination. In 18th International Conference on

Pattern Recognition (ICPR’06), volume 3, pp. 129–132. IEEE, 2006.

Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas. Picket: Guarding against

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography 207

corrupted data in tabular data during learning and inference. arXiv preprint

arXiv:2006.04730, 2020.

Zifan Liu, Jong Ho Park, Theodoros Rekatsinas, and Christos Tzamos. On robust

mean estimation under coordinate-level corruption. In International Conference

on Machine Learning, pp. 6914–6924. PMLR, 2021.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly,

Bernhard Schölkopf, and Olivier Bachem. Challenging common assumptions

in the unsupervised learning of disentangled representations. In international

conference on machine learning, pp. 4114–4124. PMLR, 2019a.

Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard

Schölkopf, and Olivier Bachem. Disentangling factors of variations using few

labels. In International Conference on Learning Representations, 2019b.

Romain Lopez, Jeffrey Regier, Michael I Jordan, and Nir Yosef. Information

constraints on auto-encoding variational bayes. Advances in Neural Information

Processing Systems, 31, 2018.

Chao Ma and Cheng Zhang. Identifiable generative models for missing not at

random data imputation. Advances in Neural Information Processing Systems,

34, 2021.

Shweta Mahajan, Apratim Bhattacharyya, Mario Fritz, Bernt Schiele, and Stefan

Roth. Normalizing flows with multi-scale autoregressive priors. 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8412–

8421, 2020.

Zelda Mariet, Rachael Harding, Sam Madden, et al. Outlier detection in heteroge-

neous datasets using automatic tuple expansion. 2016.

Emile Mathieu, Tom Rainforth, Nana Siddharth, and Yee Whye Teh. Disentangling

disentanglement in variational autoencoders. In International Conference on

Machine Learning, pp. 4402–4412. PMLR, 2019.

Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and

imputation of incomplete data sets. In International conference on machine

learning, pp. 4413–4423. PMLR, 2019.

Chris Mayfield, Jennifer Neville, and Sunil Prabhakar. Eracer: a database approach

Bibliography 208

for statistical inference and data cleaning. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of data, pp. 75–86, 2010.

John McHugh. Testing intrusion detection systems: a critique of the 1998 and

1999 darpa intrusion detection system evaluations as performed by lincoln

laboratory. ACM Transactions on Information and System Security (TISSEC),

3(4):262–294, 2000.

Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho,

and Tim Salimans. On distillation of guided diffusion models. arXiv preprint

arXiv:2210.03142, 2022.

Sebastian Mika, Bernhard Schölkopf, Alex Smola, Klaus-Robert Müller, Matthias

Scholz, and Gunnar Rätsch. Kernel pca and de-noising in feature spaces.

Advances in neural information processing systems, 11, 1998.

Gemma Elyse Moran, Dhanya Sridhar, Yixin Wang, and David Blei. Identifiable

deep generative models via sparse decoding. Transactions on Machine Learning

Research, 2022.

Karl Mosler. Depth statistics. In Robustness and complex data structures, pp.

17–34. Springer, 2013.

Mary M Moya and Don R Hush. Network constraints and multi-objective opti-

mization for one-class classification. Neural networks, 9(3):463–474, 1996.

Krikamol Muandet and Bernhard Schölkopf. One-class support measure machines

for group anomaly detection. arXiv preprint arXiv:1303.0309, 2013.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smooth-

ing help? Advances in neural information processing systems, 32, 2019.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji

Lakshminarayanan. Do deep generative models know what they don’t know?

arXiv preprint arXiv:1810.09136, 2018.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji

Lakshminarayanan. Hybrid models with deep and invertible features. In

International Conference on Machine Learning, pp. 4723–4732. PMLR, 2019.

Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, and Ambuj Tewari.

Learning with noisy labels. In NIPS, 2013.

Bibliography 209

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Han-

dling incomplete heterogeneous data using vaes. Pattern Recognition, 107:

107501, 2020.

Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. From cleaning

before ml to cleaning for ml. Data Engineering, pp. 24, 2021.

Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19,

2011.

Minh-Nghia Nguyen and Ngo Anh Vien. Scalable and interpretable one-class

SVMs with deep learning and random fourier features. In ECML/PKDD, 2018a.

Minh-Nghia Nguyen and Ngo Anh Vien. Scalable and interpretable one-class svms

with deep learning and random fourier features. In Joint European Conference

on Machine Learning and Knowledge Discovery in Databases, pp. 157–172.

Springer, 2018b.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,

Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic

image generation and editing with text-guided diffusion models. arXiv preprint

arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion

probabilistic models. In International Conference on Machine Learning, pp.

8162–8171. PMLR, 2021.

Laurel Orr, Atindriyo Sanyal, Xiao Ling, Karan Goel, and Megan Leszczynski.

Managing ml pipelines: feature stores and the coming wave of embedding

ecosystems. arXiv preprint arXiv:2108.05053, 2021.

Yassine Ouali, Céline Hudelot, and Myriam Tami. An overview of deep semi-

supervised learning. arXiv preprint arXiv:2006.05278, 2020.

Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah Goodman,

Pushmeet Kohli, Frank Wood, Philip Torr, et al. Learning disentangled repre-

sentations with semi-supervised deep generative models. Advances in neural

information processing systems, 30, 2017.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep

Bibliography 210

learning for anomaly detection: A review. ACM Computing Surveys (CSUR),

54(2):1–38, 2021.

Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B Gibbons, and Christos Falout-

sos. Loci: Fast outlier detection using the local correlation integral. In Proceed-

ings 19th international conference on data engineering (Cat. No. 03CH37405),

pp. 315–326. IEEE, 2003.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive

flow for density estimation. Advances in neural information processing systems,

30, 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,

and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling

and inference. Journal of Machine Learning Research, 22(57):1–64, 2021.

Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu

Park, and Youngmin Kim. Data synthesis based on generative adversarial

networks. Proceedings of the VLDB Endowment, 11(10), 2018.

Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data impu-

tation and acquisition with deep hierarchical models and hamiltonian monte

carlo. In Advances in Neural Information Processing Systems.

Eduardo HM Pena, Eduardo C de Almeida, and Felix Naumann. Discovery of ap-

proximate (and exact) denial constraints. Proceedings of the VLDB Endowment,

13(3):266–278, 2019.

Tomáš Pevnỳ. Loda: Lightweight on-line detector of anomalies. Machine Learning,

102(2):275–304, 2016.

Adrian Alan Pol, Victor Berger, Cecile Germain, Gianluca Cerminara, and Maur-

izio Pierini. Anomaly detection with conditional variational autoencoders. In

2019 18th IEEE international conference on machine learning and applications

(ICMLA), pp. 1651–1657. IEEE, 2019.

Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli. Analyzing noise in autoen-

coders and deep networks. arXiv preprint arXiv:1406.1831, 2014.

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa

Reyes, Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey

Bibliography 211

on deep learning: Algorithms, techniques, and applications. ACM Computing

Surveys (CSUR), 51(5):1–36, 2018.

John A Quinn, Christopher KI Williams, and Neil McIntosh. Factorial switching

linear dynamical systems applied to physiological condition monitoring. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31(9):1537–1551,

2008.

John A. Quinn, Christopher K. I. Williams, and Neil McIntosh. Factorial switching

linear dynamical systems applied to physiological condition monitoring. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31:1537–1551, 2009.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and

Christopher Ré. Snorkel: Rapid training data creation with weak supervision.

In Proceedings of the VLDB Endowment. International Conference on Very

Large Data Bases, volume 11, pp. 269. NIH Public Access, 2017.

Shebuti Rayana. Odds library, 2016. URL http://odds.cs.stonybrook.edu.

Ali Razavi, Aäron van den Oord, Ben Poole, and Oriol Vinyals. Preventing

posterior collapse with delta-vaes. arXiv preprint arXiv:1901.03416, 2019a.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-

fidelity images with vq-vae-2. Advances in neural information processing systems,

32, 2019b.

Sergey Redyuk, Sebastian Schelter, Tammo Rukat, Volker Markl, and Felix

Biessmann. Learning to validate the predictions of black box machine learning

models on unseen data. In Proceedings of the Workshop on Human-In-the-Loop

Data Analytics, pp. 1–4, 2019.

Jean-Baptiste Regli and Ricardo Silva. Alpha-beta divergence for variational

inference. CoRR, abs/1805.01045, 2018a.

Jean-Baptiste Regli and Ricardo Silva. Alpha-beta divergence for variational

inference. arXiv preprint arXiv:1805.01045, 2018b.

Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. Holoclean:

Holistic data repairs with probabilistic inference. Proceedings of the VLDB

Endowment, 10(11), 2017.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo,

http://odds.cs.stonybrook.edu

Bibliography 212

Joshua Dillon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-

distribution detection. Advances in Neural Information Processing Systems, 32,

2019.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B

Gupta, Xiaojiang Chen, and Xin Wang. A survey of deep active learning. ACM

computing surveys (CSUR), 54(9):1–40, 2021.

Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Learning disentangled

representation by exploiting pretrained generative models: A contrastive learning

view. In International Conference on Learning Representations.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing

flows. In International conference on machine learning, pp. 1530–1538. PMLR,

2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic

backpropagation and approximate inference in deep generative models. In

International conference on machine learning, pp. 1278–1286. PMLR, 2014.

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine

learning, 62(1):107–136, 2006.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.

Contractive auto-encoders: Explicit invariance during feature extraction. In

Icml, 2011.

Ad́ın Ramı́rez Rivera, Adil Khan, Imad Eddine Ibrahim Bekkouch, and

Taimoor Shakeel Sheikh. Anomaly detection based on zero-shot outlier synthesis

and hierarchical feature distillation. IEEE Transactions on Neural Networks

and Learning Systems, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 10684–10695, 2022.

Bernard Rosner. Percentage points for a generalized esd many-outlier procedure.

Technometrics, 25(2):165–172, 1983.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed

Bibliography 213

Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class

classification. In International conference on machine learning, pp. 4393–4402.

PMLR, 2018.

Lukas Ruff, Robert A Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel

Müller, Klaus-Robert Müller, and Marius Kloft. Deep semi-supervised anomaly

detection. arXiv preprint arXiv:1906.02694, 2019.

Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon,

Wojciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller.

A unifying review of deep and shallow anomaly detection. Proceedings of the

IEEE, 2021.

Salva Rühling Cachay, Benedikt Boecking, and Artur Dubrawski. End-to-end

weak supervision. Advances in Neural Information Processing Systems, 34:

1845–1857, 2021.

Adrià Ruiz, Oriol Martinez, Xavier Binefa, and Jakob Verbeek. Learning disen-

tangled representations with reference-based variational autoencoders. arXiv

preprint arXiv:1901.08534, 2019.

Gerard Salton and Michael J McGill. Introduction to modern information retrieval.

1986.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to

large diverse datasets. In ACM SIGGRAPH 2022 conference proceedings, pp.

1–10, 2022.

Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-

mann, and Andreas Grafberger. Automating large-scale data quality verification.

Proceedings of the VLDB Endowment, 11(12):1781–1794, 2018.

Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth,

and Georg Langs. Unsupervised anomaly detection with generative adversarial

networks to guide marker discovery. In International Conference on Information

Processing in Medical Imaging, pp. 146–157. Springer, 2017.

Bernhard Schölkopf, Robert C Williamson, Alexander J Smola, John Shawe-Taylor,

John C Platt, et al. Support vector method for novelty detection. In NIPS,

volume 12, pp. 582–588. Citeseer, 1999.

Bibliography 214

Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu.

Dbscan revisited, revisited: why and how you should (still) use dbscan. ACM

Transactions on Database Systems (TODS), 42(3):1–21, 2017.

Ayush Sekhari, Karthik Sridharan, and Satyen Kale. Sgd: The role of implicit

regularization, batch-size and multiple-epochs. Advances in Neural Information

Processing Systems, 34, 2021.

Tianxiao Shen, Jonas Mueller, Regina Barzilay, and T. Jaakkola. Educating text

autoencoders: Latent representation guidance via denoising. In International

Conference on Machine Learning, 2019.

Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Roberts, and Frederic

Sala. Universalizing weak supervision. arXiv preprint arXiv:2112.03865, 2021.

Rui Shu, Hung H Bui, Shengjia Zhao, Mykel J Kochenderfer, and Stefano Ermon.

Amortized inference regularization. Advances in Neural Information Processing

Systems, 31, 2018.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output represen-

tation using deep conditional generative models. Advances in neural information

processing systems, 28:3483–3491, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of

the data distribution. Advances in Neural Information Processing Systems, 32,

2019.

Yang Song and Diederik P Kingma. How to train your energy-based models.

arXiv preprint arXiv:2101.03288, 2021.

Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémen, et al. The area of the

convex hull of sampled curves: a robust functional statistical depth measure. In

International Conference on Artificial Intelligence and Statistics, pp. 570–579.

PMLR, 2020.

Yu-Sung Su, Andrew Gelman, Jennifer Hill, and Masanao Yajima. Multiple

imputation with diagnostics (mi) in r: Opening windows into the black box.

Journal of Statistical Software, 45:1–31, 2011.

Gábor J Székely, Maria L Rizzo, and Nail K Bakirov. Measuring and testing

Bibliography 215

dependence by correlation of distances. The annals of statistics, 35(6):2769–2794,

2007.

David MJ Tax and Robert PW Duin. Support vector data description. Machine

learning, 54(1):45–66, 2004.

John Taylor. Introduction to error analysis, the study of uncertainties in physical

measurements. 1997.

Chunwei Tian, Lunke Fei, Wenxian Zheng, Yong Xu, Wangmeng Zuo, and Chia-

Wen Lin. Deep learning on image denoising: An overview. Neural Networks,

131:251–275, 2020.

Gary L Tietjen and Roger H Moore. Some grubbs-type statistics for the detection

of several outliers. Technometrics, 14(3):583–597, 1972.

Michael E Tipping and Christopher M Bishop. Probabilistic principal compo-

nent analysis. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 61(3):611–622, 1999.

F. Tonolini, B. S. Jensen, and R. Murray-Smith. Variational sparse coding. In

UAI, 2019.

Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in

autoencoder-based representation learning. arXiv preprint arXiv:1812.05069,

2018.

Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al. Generalized

low rank models. Foundations and Trends® in Machine Learning, 9(1):1–118,

2016.

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo

Larochelle. Neural autoregressive distribution estimation. The Journal of

Machine Learning Research, 17(1):7184–7220, 2016.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex

Graves, et al. Conditional image generation with pixelcnn decoders. Advances

in neural information processing systems, 29, 2016.

Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent

neural networks. In International conference on machine learning, pp. 1747–1756.

PMLR, 2016.

Bibliography 216

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

Ruben Verborgh and Max De Wilde. Using OpenRefine. Packt Publishing Ltd,

2013.

Antonio Vergari, Alejandro Molina, Robert Peharz, Zoubin Ghahramani, Kristian

Kersting, and Isabel Valera. Automatic bayesian density analysis. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 33, pp. 5207–5215,

2019.

Miryam Elizabeth Villa-Pérez, Miguel Á Álvarez-Carmona, Octavio Loyola-

González, Miguel Angel Medina-Pérez, Juan Carlos Velazco-Rossell, and Kim-

Kwang Raymond Choo. Semi-supervised anomaly detection algorithms: A

comparative summary and future research directions. Knowledge-Based Sys-

tems, 218:106878, 2021.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine

Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion. Journal of

machine learning research, 11(12), 2010.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkatara-

man. Marius++: Large-scale training of graph neural networks on a single

machine. arXiv preprint arXiv:2202.02365, 2022.

Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong Chen, Jing Liao, and

Fang Wen. Bringing old photos back to life. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 2747–2757, 2020.

Yixin Wang, Alp Kucukelbir, and David M. Blei. Robust probabilistic modeling

with bayesian data reweighting. In ICML, 2017a.

Yu Wang, Bin Dai, Gang Hua, John Aston, and David P Wipf. Green generative

modeling: Recycling dirty data using recurrent variational autoencoders. In

UAI, 2017b.

Matthew Willetts, Stephen Roberts, and Chris Holmes. Semi-unsupervised learn-

Bibliography 217

ing: Clustering and classifying using ultra-sparse labels. In 2020 IEEE Interna-

tional Conference on Big Data (Big Data), pp. 5286–5295. IEEE, 2020.

Christopher KI Williams and Michalis K Titsias. Learning about multiple objects

in images: Factorial learning without factorial search. In Advances in Neural

Information Processing Systems, pp. 1415–1422, 2003.

Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan

Liu. Graph learning: A survey. IEEE Transactions on Artificial Intelligence, 2

(2):109–127, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,

2017.

Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis

between variational autoencoders and energy-based models. arXiv preprint

arXiv:2010.00654, 2020.

Doris Xin, Hui Miao, Aditya Parameswaran, and Neoklis Polyzotis. Production

machine learning pipelines: Empirical analysis and optimization opportunities.

In Proceedings of the 2021 International Conference on Management of Data,

pp. 2639–2652, 2021.

Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,

Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, and

Honglin Qiao. Unsupervised anomaly detection via variational auto-encoder for

seasonal kpis in web applications. In WWW, 2018.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.

Modeling tabular data using conditional gan. Advances in Neural Information

Processing Systems, 32, 2019.

Mohamed Yakout, Laure Berti-Équille, and Ahmed K Elmagarmid. Don’t be

scared: use scalable automatic repairing with maximal likelihood and bounded

changes. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data, pp. 553–564, 2013.

Makoto Yamada, Song Liu, and Samuel Kaski. Interpreting outliers: Localized

logistic regression for density ratio estimation. CoRR, abs/1702.06354, 2017.

Bibliography 218

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-

distribution detection: A survey. arXiv preprint arXiv:2110.11334, 2021.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation

using generative adversarial nets. In International conference on machine

learning, pp. 5689–5698. PMLR, 2018.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow

twins: Self-supervised learning via redundancy reduction. In International

Conference on Machine Learning, pp. 12310–12320. PMLR, 2021.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. A

survey on programmatic weak supervision. arXiv preprint arXiv:2202.05433,

2022.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and

Xiaokui Xiao. Privbayes: Private data release via bayesian networks. ACM

Transactions on Database Systems (TODS), 42(4):1–41, 2017.

Qian Zhao, Deyu Meng, Zongben Xu, Wangmeng Zuo, and Lei Zhang. Robust

principal component analysis with complex noise. In International conference

on machine learning, pp. 55–63. PMLR, 2014.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximiz-

ing variational autoencoders. arXiv preprint arXiv:1706.02262, 2017a.

Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features

from generative models. arXiv preprint arXiv:1702.08396, 2017b.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective

table data synthesizing. In Asian Conference on Machine Learning, pp. 97–112.

PMLR, 2021.

Guanjie Zheng, Susan L Brantley, Thomas Lauvaux, and Zhenhui Li. Contextual

spatial outlier detection with metric learning. In Proceedings of the 23rd ACM

SIGKDD international conference on knowledge discovery and data mining, pp.

2161–2170, 2017.

Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep au-

toencoders. In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 665–674. ACM, 2017.

Bibliography 219

Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsupervised

outlier detection in high-dimensional numerical data. Statistical Analysis and

Data Mining: The ASA Data Science Journal, 5(5):363–387, 2012.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki

Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsuper-

vised anomaly detection. In International conference on learning representations,

2018a.

Bo Zong, Qiankun Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu,

Dae ki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model

for unsupervised anomaly detection. In International Conference on Learning

Representations (ICLR), 2018b.

	Introduction
	Motivation
	Problem Setting
	Solving the Problem
	Why Variational Autoencoders?
	Thesis Contributions

	Background
	Problem Setting: Notation and Definitions
	Outlier Detection Task
	Types of Outliers in Data
	Problem Definition for Outlier Detection
	Classic Methods: Machine Learning and Data Mining
	Database Systems Methods
	Deep Learning Methods

	Data Repair Task
	Problem Definition for Data Repair
	Database Systems Methods
	Statistical and Machine Learning Methods

	Deep Generative Models
	Deep Generative Models for Mixed-Type Tabular Data

	Deep Generative Modelling with Variational Autoencoders
	Standard Variational Autoencoders (VAEs)
	Unsupervised AEs: Regularization or Data Reweighting
	Supervised and Semi-supervised VAEs
	Latent Space Disentanglement in VAEs

	Robust VAEs for Outlier Detection and Repair of Mixed-Type Data
	Motivation: How does it fit into the thesis?
	Introduction
	Related Work
	Problem Setting
	Proposal: Robust Variational Autoencoder (RVAE)
	Outlier Model
	Inference
	Anomaly Scores for Outlier Detection
	Repair Process for Dirty Cells

	Experiments
	Corruption Process
	Evaluation Metrics
	Competing Methods
	Hyperparameter Selection for Competing Methods
	Outlier Detection Results
	Data Repair Results
	Robustness to Noising Processes
	Robustness to Hyperparameter Values

	Additional Notes
	Dataset details
	Derivation of Coordinate Step for Weights
	Additional details for RVAE and Competing Methods

	Additional Results
	Outlier detection additional details
	Repair additional details
	RVAE-CVI vs RVAE-AVI
	Different noise processes additional details
	Error Bars per Noise Level
	Different Outlier Detection Task: RVAE vs ABDA
	Different Inference Method

	Concluding Remarks
	Advantages and Disadvantages
	Comparing to a Recent Model: Picket

	Repairing Systematic Outliers via Clean Subspace VAEs
	Motivation: How does it fit into the thesis?
	Introduction
	Related Work
	Problem Definition
	Proposal: Clean Subspace VAE (CLSVAE)
	Generative Model
	Variational Model
	Training Loss
	Distance Correlation Penalty
	Outlier Detection and Repair Process

	Experiments
	Evaluation
	Datasets and Corruption Process
	Comparative Models
	Discussion of Results
	Additional Results

	Concluding Remarks
	Advantages and Disadvantages
	Potential Real-World Applications

	Conclusion and Future Work
	Using RVAE and CLSVAE in Practice
	Data Benchmarks and Frameworks
	Going Forward on Robust Generative Models
	An Outlook of the Problem in 2022

	Bibliography

