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Problem Definition
In data cleaning, data quality rules provide a valuable
tool for enforcing the correct application of seman-
tics on a dataset. Traditional rule discovery tech-
niques assume a reasonably clean dataset, and fail
when faced with a dirty one. Enforcement of these
rules for error detection is much less effective when
mined on dirty data.
In the databases literature, a popular and expres-
sive type of logic-based data quality rule (or Integrity
Constraint) is the constant Conditional Functional
Dependency (cCFD) [1], which can be easily under-
stood by a data analyst.

Contributions
• Novel probabilistic model for error detection and

robust rule inference for cCFDs. Model filters out
redundant and spurious rules from a candidate set.

• Comparison with traditional methods for cCFD
rule set inference and error detection.

• Good results in error detection, both with set of
rules inferred, and with model itself (latent vari-
ables zt).

• Inferred set of rules S is reduced and less redun-
dant.

• Better results than traditional methods under sig-
nificant noise.

cCFD Definition and Discovery
A constant Conditional Functional Dependency
(cCFD) s in schema R is defined by:

• A pair (X → Y, tp).

• Pattern tuple tp with sets of features X and Y ,
where for each v ∈ X ∪ Y we have tp[v] is set of
constants a ∈ dom(v), and |Y | = 1 (one feature).

Discovery (logic-based inference) of cCFD rules in a
dataset:

• Traditional method CFDMiner [1] infers cCFDs
with confidence 1, not robust or statistically sound.

• Candidate rule generation for our model uses
ZART, a non-redundant Association Rule miner
modified for cCFDs, allows rules with confidence
inferior to 1.

A type of Integrity Constraints: cCFDs
Schema R for dataset can be defined by a set of cCFDs, and features of dataset attr(R) with domain dom(R).
Below examples of cCFDs inferred using our probabilistic model on UCI Adult Dataset.

#9 cCFD: (X =[relationship, education] → Y =[bracket-salary], tp =[Not-in-family, HS-grad || <=50K ])

#16 cCFD: (X =[relationship] → Y =[sex], tp =[Husband || Male ])

Factor Graph
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Factor graph for joint Error Detection and Rule
Learning. Note that xt[A] is the only visible

variable, representing the values of cells in the
dataset.

Generative Process
For each data item xt and feature A ∈ attr(R) in dataset, we learn to model Pdata(xt[A]) and Pnoise(xt[A]),
data model (e.g. density estimation) and noise model (e.g. uniform distribution, as for outlier detection)
respectively. Latent variables zt[A] ∈ zt and uts ∈ ut are inferred, as well as cCFD rule set S, with s ∈ S.

P (xt, zt,ut|θ) =
attr(R)∏

A

[
[θAPdata(xt[A])]

zt[A] [(1− θA)Pnoise(xt[A])]
1−zt[A]

]∏
s′ (1−uts′ )

S∏
s

Fs(xt[v], zt[v], uts)
uts

Factor Fs is deterministic and enforces the cCFD rule (X → Y, tp) onto data item xt:

Fs(xt[v], zt[v], uts) =


0, if uts = 1, zt[v] = 1, and xt[X] = tp[X], and xt[Y ] 6= tp[Y ]

0, if uts = 1, zt[X] = 1, zt[Y ] = 0, and xt[v] = tp[v]

1, otherwise

• Latent variable zt[A] ∈ zt defines if cell xt[A] is considered clean zt[A] = 1, or dirty zt[A] = 0. A Bernoulli
prior is defined on zt[A], zt[A] ∼ Bern(θA). Set of cCFD rules S is inferred, each rule s ∈ S is provided with
latent binary variable uts for the existence/support of rule s in xt, several rules can generate xt[A].

• Inference in our model uses Structural Expectation Maximization [2], and candidate set from ZART is used
to induce a new rule s into S. Viterbi EM infers variables zt ut. Set S is inferred in structural M-Step.

Results I: Error Detection
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F-Measure of error detection per method, for
each injected noise level in Adult dataset - 0.1%
to 20 % erroneous cells, corrupted at random.

Results II: Rule Redundancy

Corruption Level Candidate Type ZART (Candidate Set) Prob-Log (Set S) CFDMiner

0.1 % high_conf 58 43 1352
1 % high_conf 46 38 538
1 % low_conf 265 115 538
3 % high_conf 58 48 19
5 % high_conf 69 59 0
5 % low_conf 248 133 0
7 % high_conf 71 58 0
10 % high_conf 70 54 0
10 % low_conf 265 156 0
15 % high_conf 66 48 0
15 % low_conf 270 169 0
20 % high_conf 128 86 0

Number of Rules generated per method, per
injected noise level in Adult dataset - from 0.1%
to 20 % erroneous cells, corrupted at random.
Ground-Truth cCFD rules using CFDMiner

registers 611 rules on clean dataset.
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